Создаем движок на mvc с нуля. Удобный подход к веб-разработке: Модель MVC

Паттерн Model-View-Controller (MVC) является крайне полезным при создании приложений со сложным графическим интерфейсом или поведением. Но и для более простых случаев он также подойдет. В этой заметке мы создадим игру сапер, спроектированную на основе этого паттерна. В качестве языка разработки выбран Python, однако особого значения в этом нет. Паттерны не зависят от конкретного языка программирования и вы без труда сможете перенести получившуюся реализацию на любую другую платформу.

Реклама

Коротко о паттерне MVC

Как следует из названия, паттерн MVC включает в себя 3 компонента: Модель, Представление и Контроллер. Каждый из компонентов выполняет свою роль и является взаимозаменяемым. Это значит, что компоненты связаны друг с другом лишь некими четкими интерфейсами, за которыми может лежать любая реализация. Такой подход позволяет подменять и комбинировать различные компоненты, обеспечивая необходимую логику работы или внешний вид приложения. Разберемся с теми функциями, которые выполняет каждый компонент.

Модель

Отвечает за внутреннюю логику работы программы. Здесь мы можем скрыть способы хранения данных, а также правила и алгоритмы обработки информации.

Например, для одного приложения мы можем создать несколько моделей. Одна будет отладочной, а другая рабочей. Первая может хранить свои данные в памяти или в файле, а вторая уже задействует базу данных. По сути это просто паттерн Стратегия.

Представление

Отвечает за отображение данных Модели. На этом уровне мы лишь предоставляем интерфейс для взаимодействия пользователя с Моделью. Смысл введения этого компонента тот же, что и в случае с предоставлением различных способов хранения данных на основе нескольких Моделей.

Например, на ранних этапах разработки мы можем создать простое консольное представление для нашего приложения, а уже потом добавить красиво оформленный GUI. Причем, остается возможность сохранить оба типа интерфейсов.

Кроме того, следует учитывать, что в обязанности Представления входит лишь своевременное отображение состояния Модели. За обработку действий пользователя отвечает Контроллер, о которым мы сейчас и поговорим.

Контроллер

Обеспечивает связь между Моделью и действиями пользователя, полученными в результате взаимодействия с Представлением. Координирует моменты обновления состояний Модели и Представления. Принимает большинство решений о переходах приложения из одного состояния в другое.

Фактически на каждое действие, которое может сделать пользователь в Представлении, должен быть определен обработчик в Контроллере. Этот обработчик выполнит соответствующие манипуляции над моделью и в случае необходимости сообщит Представлению о наличии изменений.

Реклама

Спецификации игры Сапер

Достаточно теории. Теперь перейдем к практике. Для демонстрации паттерна MVC мы напишем несложную игру: Сапер. Правила игры достаточно простые:

  1. Игровое поле представляет собой прямоугольную область, состоящую из клеток. В некоторых клетках случайным образом расположены мины, но игрок о них не знает;
  2. Игрок может щелкнуть по любой клетке игрового поля левой или правой кнопками мыши;
  3. Щелчок левой кнопки мыши приводит к тому, что клетка будет открыта. При этом, если в клетке находится мина, то игра завершается проигрышем. Если в соседних клетках, рядом с открытой, расположены мины, то на открытой клетке отобразится счетчик с числом мин вокруг. Если же мин вокруг открытой клетки нет, то каждая соседняя клетка будет открыта по тому же принципу. То есть клетки будут открываться до тех пор, пока либо не упрутся в границу игрового поля, либо не дойдут до уже открытых клеток, либо рядом с ними не окажется мина;
  4. Щелчок правой кнопки мыши позволяет делать пометки на клетках. Щелчок на закрытой клетке помечает ее флажком, который блокирует ее состояние и предотвращает случайное открытие. Щелчок на клетке, помеченной флажком, меняет ее пометку на вопросительный знак. В этом случае клетка уже не блокируется и может быть открыта левой кнопкой мыши. Щелчок на клетке с вопросительным знаком возвращает ей закрытое состояние без пометок;
  5. Победа определяется состоянием игры, при котором на игровом поле открыты все клетки, за исключением заминированных.

Пример того, что у нас получится приведен ниже:

UML-диаграммы игры Сапер

Прежде чем перейти к написанию кода неплохо было бы заранее продумать архитектуру приложения. Она не должна зависеть от языка реализации, поэтому для наших целей лучше всего подойдет UML.

Диаграмма Состояний игровой клетки

Любая клетка на игровом поле может находиться в одном из 4 состояний:

  1. Клетка закрыта;
  2. Клетка открыта;
  3. Клетка помечена флажком;
  4. Клетка помечена вопросительным знаком.

Здесь мы определили лишь состояния, значимые для Представления. Поскольку мины в процессе игры не отображаются, то и в базовом наборе соответствующего состояния не предусмотрено. Определим возможные переходы из одного состояния клетки в другое с помощью UML Диаграммы Состояний:

Диаграмма Классов игры Сапер

Поскольку мы решили создавать наше приложение на основе паттерна MVC, то у нас будет три основных класса: MinesweeperModel , MinesweeperView и MinesweeperController , а также вспомогательный класс MinesweeperCell для хранения состояния клетки. Рассмотрим их диаграмму классов:

Организация архитектуры довольно проста. Здесь мы просто распределили задачи по каждому классу в соответствии с принципами паттерна MVC:

  1. В самом низу иерархии расположен класс игровой клетки MinesweeperCell . Он хранит позицию клетки, определяемую рядом row и столбцом column игрового поля; одно из состояний state , которые мы описали в предыдущем подразделе; информацию о наличии мины в клетке (mined) и счетчик мин в соседних клетках counter . Кроме того, у него есть два метода: nextMark() для циклического перехода по состояниям, связанным с пометками, появляющимися в результате щелчка правой кнопкой мыши, а также open() , который обрабатывает событие, связанное с щелчком левой кнопкой мыши;
  2. Чуть выше расположен класс Модели MinesweeperModel . Он является контейнером для игровых клеток MinesweeperCell . Его первый метод startGame() подготавливает игровое поле для начала игры. Метод isWin() делает проверку игрового поля на состояние выигрыша и возвращает истину, если игрок победил, иначе возвращается ложь. Для проверки проигрыша предназначен аналогичный метод isGameOver() . Методы openCell() и nextCellMark() всего лишь делегируют действия соответствующим клеткам на игровом поле, а метод getCell() возвращает запрашиваемую игровую клетку;
  3. Класс Представления MinesweeperView включает следующие методы: syncWithModel() - обеспечивает перерисовку Представления для отображения актуального состояния игрового поля в Модели; getGameSettings() - возвращает настройки игры, заданные пользователем; createBoard() - создает игровое поле на основе данных Модели; showWinMessage() и showGameOverMessage() соответственно отображают сообщения о победе и проигрыше;
  4. И наконец класс Контроллера MinesweeperController . В нем определено всего три метода на каждое возможное действие игрока: startNewGame() отвечает за нажатие на кнопке "Новая игра" в интерфейсе Представления; onLeftClick() и onRightClick() обрабатывают щелчки по игровым клеткам левой и правой кнопками мыши соответственно.

Реализация игры Сапер на Python

Пришло время заняться реализацией нашего проекта. В качестве языка разработки выберем Python. Тогда класс Представления будем писать на основе модуля tkinter .

Но начнем с Модели.

Модель MinsweeperModel

Реализация модели на языке Python выглядит следующим образом:

MIN_ROW_COUNT = 5 MAX_ROW_COUNT = 30 MIN_COLUMN_COUNT = 5 MAX_COLUMN_COUNT = 30 MIN_MINE_COUNT = 1 MAX_MINE_COUNT = 800 class MinesweeperCell: # Возможные состояния игровой клетки: # closed - закрыта # opened - открыта # flagged - помечена флажком # questioned - помечена вопросительным знаком def __init__(self, row, column): self.row = row self.column = column self.state = "closed" self.mined = False self.counter = 0 markSequence = [ "closed", "flagged", "questioned" ] def nextMark(self): if self.state in self.markSequence: stateIndex = self.markSequence.index(self.state) self.state = self.markSequence[ (stateIndex + 1) % len(self.markSequence) ] def open(self): if self.state != "flagged": self.state = "opened" class MinesweeperModel: def __init__(self): self.startGame() def startGame(self, rowCount = 15, columnCount = 15, mineCount = 15): if rowCount in range(MIN_ROW_COUNT, MAX_ROW_COUNT + 1): self.rowCount = rowCount if columnCount in range(MIN_COLUMN_COUNT, MAX_COLUMN_COUNT + 1): self.columnCount = columnCount if mineCount < self.rowCount * self.columnCount: if mineCount in range(MIN_MINE_COUNT, MAX_MINE_COUNT + 1): self.mineCount = mineCount else: self.mineCount = self.rowCount * self.columnCount - 1 self.firstStep = True self.gameOver = False self.cellsTable = for row in range(self.rowCount): cellsRow = for column in range(self.columnCount): cellsRow.append(MinesweeperCell(row, column)) self.cellsTable.append(cellsRow) def getCell(self, row, column): if row < 0 or column < 0 or self.rowCount <= row or self.columnCount <= column: return None return self.cellsTable[ row ][ column ] def isWin(self): for row in range(self.rowCount): for column in range(self.columnCount): cell = self.cellsTable[ row ][ column ] if not cell.mined and (cell.state != "opened" and cell.state != "flagged"): return False return True def isGameOver(self): return self.gameOver def openCell(self, row, column): cell = self.getCell(row, column) if not cell: return cell.open() if cell.mined: self.gameOver = True return if self.firstStep: self.firstStep = False self.generateMines() cell.counter = self.countMinesAroundCell(row, column) if cell.counter == 0: neighbours = self.getCellNeighbours(row, column) for n in neighbours: if n.state == "closed": self.openCell(n.row, n.column) def nextCellMark(self, row, column): cell = self.getCell(row, column) if cell: cell.nextMark() def generateMines(self): for i in range(self.mineCount): while True: row = random.randint(0, self.rowCount - 1) column = random.randint(0, self.columnCount - 1) cell = self.getCell(row, column) if not cell.state == "opened" and not cell.mined: cell.mined = True break def countMinesAroundCell(self, row, column): neighbours = self.getCellNeighbours(row, column) return sum(1 for n in neighbours if n.mined) def getCellNeighbours(self, row, column): neighbours = for r in range(row - 1, row + 2): neighbours.append(self.getCell(r, column - 1)) if r != row: neighbours.append(self.getCell(r, column)) neighbours.append(self.getCell(r, column + 1)) return filter(lambda n: n is not None, neighbours)

В верхней части мы определяем диапазон допустимых настроек игры:

MIN_ROW_COUNT = 5 MAX_ROW_COUNT = 30 MIN_COLUMN_COUNT = 5 MAX_COLUMN_COUNT = 30 MIN_MINE_COUNT = 1 MAX_MINE_COUNT = 800

Вообще, эти настройки можно было сделать тоже частью Модели. Однако размеры поля и количество мин достаточно статичная информация и вряд ли будет часто меняться.

Затем мы определили класс игровой клетки MinesweeperCell . Она оказалась достаточно простой. В конструкторе класса происходит инициализация полей клетки значениями по умолчанию. Далее для упрощения реализации циклических переходов по состояниям мы используем вспомогательный список markSequence . Если клетка находится в состоянии "opened" , которое не входит в этот список, то в методе nextMark() ничего не произойдет, иначе клетка попадает в следующее состояние, причем, из последнего состояния "questioned" она "перепрыгивает" в начальное состояние "closed" . В методе open() мы проверяем состояние клетки, и если оно не равно "flagged" , то клетка переходит в открытое состояние "opened" .

Далее следует определение класса Модели MinesweeperModel . Метод startGame() осуществляет компоновку игрового поля по переданным ему параметрам rowCount , columnCount и mineCount . Для каждого из параметров происходит проверка на попадание в допустимый диапазон значений. Если переданное значение находится вне диапазона, то сохраняется то значение параметра игрового поля не меняется. Следует отметить, что для числа мин предусмотрена дополнительная проверка. Если переданное количество мин превышает размер поля, то мы ограничиваем его количеством клеток без единицы. Хотя, конечно, такая игра особого смысла не имеет и будет закончена в один шаг, поэтому вы можете придумать какое-нибудь свое правило на такой случай.

Игровое поле хранится в виде списка списков клеток в переменной cellsTable . Причем, обратите внимание, что в методе startGame() у клеток устанавливается лишь значение позиции, но мины еще не расставляются. Зато определяется переменная firstStep со значением True . Это нужно для того, чтобы убрать элемент случайности из первого хода и не допускать мгновенный проигрыш. Мины будут расставляться после первого хода в оставшихся клетках.

Метод getCell() просто возвращает клетку игрового поля по строке row и столбцу column . Если значение строки или столбца неверно, то возвращается None .

Метод isWin() возвращает True , если все оставшиеся не открытые клетки игрового поля заминированы, то есть в случае победы, иначе вернется False . А метод isGameOver() просто возвращает значение атрибута класса gameOver .

В методе openCell() происходит делегирование вызова open() объекту игровой клетки, которая расположена на игровом поле в позиции, указанной в параметрах метода. Если открытая клетка оказалось заминированной, то мы устанавливаем значение gameOver в True и выходим из метода. Если игра еще не окончена, то мы смотрим, а не первый ли это ход, проверяя значение firstStep . Если ход и правда первый, то произойдет расстановка мин по игровому полю с помощью вспомогательного метода generateMines() , о которой мы поговорим немного позже. Далее мы подсчитываем количество заминированных соседних клеток и устанавливаем соответствующее значение атрибута counter для обрабатываемой клетки. Если счетчик counter равен нулю, то мы запрашиваем список соседних клеток с помощью метода getCellNeighbours() и осуществляем рекурсивный вызов метода openCell() для всех закрытых "соседей", то есть для клеток со статусом "closed" .

Метод nextCellMark() всего лишь делегирует вызов методу nextMark() для клетки, расположенной на переданной позиции.

Расстановка мин происходит в методе generateMines() . Здесь мы просто случайным образом выбираем позицию на игровом поле и проверяем, чтобы клетка на этой позиции не была открыта и не была уже заминирована. Если оба условия выполнены, то мы устанавливаем значение атрибута mined равным True , иначе продолжаем поиск другой свободной клетки. Не забудьте, что для того, чтобы использовать на Python модуль random нужно явным образом его импортировать командой import random .

Метод подсчета количества мин countMinesAroundCell() вокруг некоторой клетки игрового поля полностью основывается на методе getCellNeighbours() . Запрос "соседей" клетки в методе getCellNeighbours() тоже реализован крайне просто. Не думаю, что у вас возникнут с ним проблемы.

Представление MinesweeperView

Теперь займемся представлением. Код класса MinesweeperView на Python представлен ниже:

Class MinesweeperView(Frame): def __init__(self, model, controller, parent = None): Frame.__init__(self, parent) self.model = model self.controller = controller self.controller.setView(self) self.createBoard() panel = Frame(self) panel.pack(side = BOTTOM, fill = X) Button(panel, text = "Новая игра", command = self.controller.startNewGame).pack(side = RIGHT) self.mineCount = StringVar(panel) self.mineCount.set(self.model.mineCount) Spinbox(panel, from_ = MIN_MINE_COUNT, to = MAX_MINE_COUNT, textvariable = self.mineCount, width = 5).pack(side = RIGHT) Label(panel, text = " Количество мин: ").pack(side = RIGHT) self.rowCount = StringVar(panel) self.rowCount.set(self.model.rowCount) Spinbox(panel, from_ = MIN_ROW_COUNT, to = MAX_ROW_COUNT, textvariable = self.rowCount, width = 5).pack(side = RIGHT) Label(panel, text = " x ").pack(side = RIGHT) self.columnCount = StringVar(panel) self.columnCount.set(self.model.columnCount) Spinbox(panel, from_ = MIN_COLUMN_COUNT, to = MAX_COLUMN_COUNT, textvariable = self.columnCount, width = 5).pack(side = RIGHT) Label(panel, text = "Размер поля: ").pack(side = RIGHT) def syncWithModel(self): for row in range(self.model.rowCount): for column in range(self.model.columnCount): cell = self.model.getCell(row, column) if cell: btn = self.buttonsTable[ row ][ column ] if self.model.isGameOver() and cell.mined: btn.config(bg = "black", text = "") if cell.state == "closed": btn.config(text = "") elif cell.state == "opened": btn.config(relief = SUNKEN, text = "") if cell.counter > 0: btn.config(text = cell.counter) elif cell.mined: btn.config(bg = "red") elif cell.state == "flagged": btn.config(text = "P") elif cell.state == "questioned": btn.config(text = "?") def blockCell(self, row, column, block = True): btn = self.buttonsTable[ row ][ column ] if not btn: return if block: btn.bind("", "break") else: btn.unbind("") def getGameSettings(self): return self.rowCount.get(), self.columnCount.get(), self.mineCount.get() def createBoard(self): try: self.board.pack_forget() self.board.destroy() self.rowCount.set(self.model.rowCount) self.columnCount.set(self.model.columnCount) self.mineCount.set(self.model.mineCount) except: pass self.board = Frame(self) self.board.pack() self.buttonsTable = for row in range(self.model.rowCount): line = Frame(self.board) line.pack(side = TOP) self.buttonsRow = for column in range(self.model.columnCount): btn = Button(line, width = 2, height = 1, command = lambda row = row, column = column: self.controller.onLeftClick(row, column), padx = 0, pady = 0) btn.pack(side = LEFT) btn.bind("", lambda e, row = row, column = column: self.controller.onRightClick(row, column)) self.buttonsRow.append(btn) self.buttonsTable.append(self.buttonsRow) def showWinMessage(self): showinfo("Поздравляем!", "Вы победили!") def showGameOverMessage(self): showinfo("Игра окончена!", "Вы проиграли!")

Наше Представление основано на классе Frame из модуля tkinter , поэтому не забудьте выполнить соответствующую команду импорта: from tkinter import * . В конструкторе класса передаются Модель и Контроллер. Сразу же вызывается метод createBoard() для компоновки игрового поля из клеток. Скажу заранее, что для этой цели мы будем использовать обычные кнопки Button . Затем создается Frame , который будет выполнять роль нижней панели для указания параметров игры. На эту панель мы последовательно помещаем кнопку "Новая игра", обработчиком которой становится наш Контроллер с его методом startNewGame() , а затем три счетчика Spinbox для того, чтобы игрок мог указать размер игрового поля и число мин.

Метод syncWithModel() просто проходит в двойном цикле по каждой игровой клетке и изменяет соответствующим образом вид кнопки, которая представляет ее в нашем графическом интерфейсе. Для простоты я использовал текстовые символы для вывода обозначений, однако не так сложно поменять текст на графику из внешних графических файлов.

Кроме того, обратите внимание, что для представления открытой клетки мы используем стиль кнопки SUNKEN . А в случае проигрыша открываем местоположение всех мин на игровом поле, показывая соответствующие кнопки черным цветом, а кнопку, отвечающую последней открытой клетке с миной, выделяем красным цветом:

Следующий метод blockCell() выполняет вспомогательную роль и позволяет контроллеру устанавливать состояние блокировки для кнопок. Это нужно для предотвращения случайного открытия игровых клеток, помеченных флажком, и достигается путем установки пустого обработчика щелчка левой кнопки мыши.

Метод getGameSettings() всего лишь возвращает значения размещенных в нижней панели счетчиков с размером игрового поля и количеством мин.

Создание представления игрового поля осуществляется в методе createBoard() . В первую очередь идет попытка удаления старого игрового поля, если оно существовало, а также мы пробуем установить значения счетчиков из панели в соответствии с текущей конфигурацией Модели. Затем создается новый Frame , который мы назовем board , для представления игрового поля. Таблицу кнопок buttonsTable мы компонуем по тому же принципу, что и игровые клетки в Модели с помощью двойного цикла. Обработчики каждой кнопки привязываются к методам Контроллера onLeftClick() и onRightClick() для щелчка левой и правой кнопок мыши соответственно.

Последние два метода showWinMessage() и showGameOverMessage() всего лишь отображают диалоговые окна с соответствующими сообщениями с помощью функции showinfo() . Для того, чтобы ей воспользоваться вам понадобится импортировать еще один модуль: from tkinter.messagebox import * .

Контролер MinesweeperController

Вот мы и дошли до реализации Контроллера:

Class MinesweeperController: def __init__(self, model): self.model = model def setView(self, view): self.view = view def startNewGame(self): gameSettings = self.view.getGameSettings() try: self.model.startGame(*map(int, gameSettings)) except: self.model.startGame(self.model.rowCount, self.model.columnCount, self.model.mineCount) self.view.createBoard() def onLeftClick(self, row, column): self.model.openCell(row, column) self.view.syncWithModel() if self.model.isWin(): self.view.showWinMessage() self.startNewGame() elif self.model.isGameOver(): self.view.showGameOverMessage() self.startNewGame() def onRightClick(self, row, column): self.model.nextCellMark(row, column) self.view.blockCell(row, column, self.model.getCell(row, column).state == "flagged") self.view.syncWithModel()

Для привязки Представления к Контроллеру мы добавили метод setView() . Это объясняется тем, что если бы мы хотели передать Представление в конструктор, то это Представление должно было бы уже существовать до момента создания Контроллера. А тогда подобное решение с дополнительным методом для привязки просто перешло бы от Контроллера к Представлению, в которым бы появился метод setController() .

Метод-обработчик для нажатия на кнопке "Новая игра" startNewGame() сначала запрашивает параметры игры, введенные в Представление. Параметры игры возвращаются в виде кортежа из трех компонент, которые мы пытаемся преобразовать в int . Если все пройдет нормально, то мы передаем эти значения в метод Модели startGame() для построения игрового поля. Если же что-то пойдет не так, то мы просто пересоздадим игровое поле со старыми параметрами. А в завершении мы направляем запрос на создание нового отображения игрового поля в Представлении с помощью вызова метода createBoard() .

Обработчик onLeftClick() сначала указывает Модели на необходимость открыть игровую клетку в выбранной игроком позиции. Затем сообщает Представлению о том, что состояние Модели изменилось и предлагает все перерисовать. Затем происходит проверка Модели на состояние победы или проигрыша. Если что-то из этого произошло, то сначала в Представление направляется запрос на отображение соответствующего уведомления, а затем происходит вызов обработчика startNewGame() для начала новой игры.

Щелчок правой кнопкой мыши обрабатывается в методе onRightClick() . В первой строке происходит вызов метода Модели nextCellMark() для циклической смены метки выбранной игровой клетки. В зависимости от нового состояния клетки Представлению отправляется запрос на установку или снятие блокировки на соответствующую кнопку. А в конце вновь обеспечивается обновление вида Представления для отображения актуального состояния Модели.

Комбинируем Модель, Представление и Контроллер

Теперь осталось лишь соединить все элементы в рамках нашей реализации Сапера на основе паттерна MVC и запустить игру:

Model = MinesweeperModel() controller = MinesweeperController(model); view = MinesweeperView(model, controller) view.pack() view.mainloop()

Заключение

Вот мы и рассмотрели паттерн MVC. Коротко прошлись по теории. А потом по шагам создали полноценное игровое приложение, пройдя путь от постановки задачи и проектирования архитектуры до реализации на языке программирования Python с использованием графического модуля tkinter .

Паттерн Model-View-Controller (MVC) , открытый в в конце 1970-х, представляет собой шаблон проектирования архитектуры программного обеспечения, основной задачей которого является отделение функций работы с данными от их представления. Теоретически, грамотно спроектированное MVC-приложение позволит фронтенд и бэкенд разработчикам в ходе работы не вмешиваться в зоны ответственности друг друга, то есть фронтенд-разработчику не понадобиться что-либо знать о «кухне» своего бэкенд-коллеги и наоборот.

Хотя изначально MVC был спроектирован для разработки десктоп-приложений, он был адаптирован для современных задач и пользуется у веб-разработчиков огромной популярностью, поскольку за счёт разделения ответственности стало возможным создавать более ясный, готовый к повторному использованию код. Паттерн MVC приводит к созданию ясных, модульных систем, что позволяет разработчикам очень быстро вносить изменения в существующий код.

В этой статье мы рассмотрим базовые принципы MVC, начав с определения паттерна и продолжив его применением в небольшом примере. Эта статья будет прежде всего полезна тем, кто ещё никогда не сталкивался с этим паттерном в жизни, а также, возможно, и тем, кто желает освежить в памяти знания об MVC.

Понимание MVC

Как уже было сказано, название паттерна происходит от аббревиатуры трёх слов: Model (модель), View (представление) и Controller (контроллер) . Вкратце принцип работы паттерна можно проиллюстрировать одной схемой ( можно найти на Википедии):

Эта схема наглядно показывает однонаправленность потока информации в паттерне, а также описывает роли каждого компонента.

Модель

Модель используется для доступа и манипулирования данными. В большинстве случаев модель — это то, что используется для доступа к хранилищу данных (например, базе данных). Модель предоставляет интерфейс для поиска данных, их создания, модификации и удаления из хранилища. В контексте паттерна MVC модель является посредником между представлением и контроллером.

Крайне важной чертой модели является то, что технически она не имеет никаких знаний ни о том, что происходит с данными в контроллере и представлении. Модель никогда не должна делать или ожидать каких-либо запросов в/из других компонентов паттерна.

Тем не менее, всегда помните, что модель — это не просто шлюз доступа к базе данных или другой системе, который только и занимается что передачей данных туда-сюда. Модель — это нечто вроде пропускного пункта к данным. Модель в большинстве случаев является самой сложной частью системы, отчасти из-за того, что сама по себе модель есть связующее звено для всех остальных частей.

Представление

Представление — это то, где данные, полученные от модели, выводятся в нужном виде. В традиционных веб-приложениях, разработанных в рамках MVC-паттерна, представление — это часть системы, где выполняется генерация HTML-кода. Представление также отвечает за получение действий от пользователя с тем чтобы отправить их контроллеру. Например, представление отображает кнопку в пользовательском интерфейсе, а после её нажатия вызывает соответствующее действие контроллера.

Существуют некоторые заблуждения относительно предназначения представления, особенно в среде веб-разработчиков, которые только начинают строить свои приложения с использованием MVC. Одним из наиболее часто нарушаемых правил является то, что представление никоим образом не должно общаться с моделью , а все данные, получаемые представлением должны поступать только от контроллера . На практике же разработчики часто игнорируют эту концепцию, стоящую в основах MVC-паттерна. В статье Fabio Cevasco наглядно показан этот сбивающий с толку подход к MVC на примере фреймворка CakePHP, одним из многих нестандартных MVC-фреймворков:

Крайне важно понимать, что для того, чтобы получить правильную MVC-архитектуру, не должно быть никаких прямых взаимодействий между представлениями и моделями. Вся логика обмена данными между ними должна быть реализована в контроллерах.

Помимо этого, существует распространённое заблуждение о том, что представление — это просто темплейт-файл. Как заметил Tom Butler, это заблуждение имеет огромный масштаб из-за того, что многие разработчики с самого начала неправильно понимают структуру MVC, после чего начинают вливать эти «знания» дальше, массы начинающих разработчиков. В действительности представление — это гораздо больше, чем просто темплейт, однако много фреймворков, построенных на базе MVC-паттерна, настолько исказили концепцию представления, что уже всем пофигу, насколько правильными являются их приложения с точки зрения MVC-паттерна.

Также важным моментом является то, что представление никогда не работает с «чистыми» данными от контроллера, то есть контроллер никогда не работает с представлением в обход модели. В процессе взаимодействия контроллера и представления модель всегда должна находиться между ними.

Контроллер

Контроллер — это последняя часть связки MVC. Задачей контроллера является получение данных от пользователя и манипуляция моделью. Именно контроллер, и только он, является той частью системы, которая взаимодействует с пользователем.

В двух словах контроллер можно описать как сборщик информации, передающий её модели для обработки и хранения. Он не должен делать ничего с данными, а только лишь уметь получать их от пользователя. Контроллер связан с одним представлением и одной моделью, организуя таким образом однонаправленный поток данных, контролируя его на каждом этапе.

Очень важно запомнить, что что контроллер начинает свою работу только в результате взаимодействия пользователя с представлением, которое вызывает соответствующую функцию контроллера. Самая распространённая ошибка среди разработчиков заключается в том, что контроллер рассматривается просто как шлюз между представлением и моделью. В результате чего контроллер наделяется теми функциями, который должны выполняться представлением (кстати, вот откуда растут ноги у идеи, что представление — это просто темплейт-файл). Вдобавок ко всему многие вообще сваливают всю логику обработки данных, забывая о том, для чего в паттерне MVC предназначена модель.

MVC в PHP

Предлагаю попробовать реализовать описанное выше в небольшом приложении. Начнём с того, что создадим классы модели, представления и контроллера:

string = "MVC + PHP = Awesome!"; } } controller = $controller; $this->

" . $this->model->string . "

"; } } model = $model; } }

Основные классы готовы. Теперь давайте свяжем их вместе и запустим наше приложение:

output();

Как видите, контроллер не обладает никакой функциональностью, поскольку пользователь никак не взаимодействует с приложением. Вся функциональность помещена в представление, поскольку наше приложение предназначено исключительно для вывода данных.

Давайте немного расширим приложение, добавив немного интерактивности, чтобы увидеть, как работает контроллер:

string = “MVC + PHP = Awesome, click here!”; } } controller = $controller; $this->model = $model; } public function output() { return "

model->string . "

"; } } model = $model; } public function clicked() { $this->model->string = “Updated Data, thanks to MVC and PHP!” } }

И в завершение немного модернизируем связующий код:

{$_GET["action"]}(); } echo $view->output();

Итоги

В этой небольшой статье мы рассмотрели основные концепции шаблона проектирования MVC и разработали простенькое приложение на его базе, хотя конечно, нам ещё очень далеко до того, чтобы использовать это в реальной жизни. В следующей статье мы рассмотрим основные затруднения, с которыми вы столкнётесь, если плотнее займётесь построением архитектуры приложения на базе MVC-паттерна. Stay tuned!

Всем привет! Продолжаем строить собственное MVC приложение , и сегодня мы начнем заниматься выводом страниц.

Создадим файл View.php в папке libs .

class View {

echo "Это вид";
}
}
?>

Теперь откроем наш главный файл index.php и подключим его.

Require "libs/View.php";

Открыв страницу, мы должны увидеть надпись "Это вид".

Теперь немного изменим наш класс, отвечающий за вид, добавив метод render , который будет заниматься выводом.

class View {
public function __construct() {
echo "Это вид";
}

Public function render($name) {
require "views/".$name.".php";
}
}
?>

Теперь создадим папки index и error в папке views . Они будут отвечать за представление index страницы и страницы ошибок. В папке error создадим новый index.php файл и пропишем следующее


Это страница ошибки!

Теперь создадим файл header.php в самой папке views с таким содержанием


Header

Перейдем в файл error.php , который находится в папке error и добавим в конструктор вызов метода render .

public function __construct() {
// код
$this->view->render("error/index");
}
?>

Теперь на странице мы увидим "Header Это страница ошибки!"

Давайте немного улучшим наш контроллер, добавив к нему перед вызовом метода render следующее:

public function __construct() {
// код
$this->view->msg = "Страницы не существует!";
$this->view->render("error/index");
}
?>

А теперь в файле index.php , который отвечает за вид ошибки, вместо нашей надписи "Это страница ошибки!" выведим то, что хранится в свойстве msg .




msg; ?>

Теперь нам вывелась наша надпись.

Давайте теперь создадим модель help_model.php в папке models .

class Help_Model extends Model {
public function __construct() {
echo "Модель help_model";
}
}
?>

Теперь откроем контроллер help.php из папки controllers и добавим вызов нашей модели

class Help extends Controller {
// код

Public function other($arg = false) {
// код

Require "models/help_model.php";
$model = new Help_Model();
}
}
?>

class Model {
public function __construct() {
// $this->database = new Database();
}
}
?>

Наша модель будет работать с базой данных, но пока что закомментируем это, т.к. у нас еще нет базы данных.

Подключим нашу базовую модель в нашем главном файле index.php .

Require "libs/Bootstrap.php"; require "libs/Controller.php"; require "libs/model.php"; require "libs/View.php";

Итак, на этом сегодня остановимся. Мы уже сделали некоторый вывод на страницу, а в следующих статьях продолжим это улучшать. Спасибо за внимание и удачного кодинга!

Шаблон проектирования Модель-Представление-Контроллер (MVC) — это шаблон программной архитектуры, построенный на основе сохранения представления данных отдельно от методов, которые взаимодействуют с данными.

Не смотря на то, что схема MVC была первоначально разработана для персональных компьютеров, она была адаптирована и широко используется веб-разработчиками из-за точного разграничения задач и возможности повторного использования кода. Схема стимулирует развитие модульных систем, что позволяет разработчикам быстро обновлять, добавлять или удалять функционал.

В этой статье я опишу основные принципы, а также рассмотрю определение схемы построения и простой MVC PHP пример.

Что такое MVC

Название шаблона проектирования определяется тремя его основными составляющими частями: Модель, Представление и Контроллер. Визуальное представление шаблона MVC выглядит, как показано на приведенной ниже диаграмме :


На рисунке показана структура одностороннего потока данных и пути его следования между различными компонентами, а также их взаимодействие.

Модель

Моделью называют постоянное хранилище данных, используемых во всей структуре. Она должна обеспечивать доступ к данным для их просмотра, отбора или записи. В общей структуре «Модель » является мостом между компонентами «Представление » и «Контроллер ».

При этом «Модель » не имеет никакой связи или информации о том, что происходит с данными, когда они передаются компонентам «Представление » или «Контроллер ». Единственная задача «Модели » — обработка данных в постоянном хранилище, поиск и подготовка данных, передаваемых другим составляющим MVC .

«Модель » должна выступать в качестве «привратника », стоящего возле хранилища данных и не задающего вопросов, но принимающего все поступающие запросы. Зачастую это наиболее сложная часть системы MVC . Компонент «Модель » — это вершина всей структуры, так как без нее невозможна связь между «Контроллером » и «Представлением ».

Представление

Представление — это часть системы, в которой данным, запрашиваемым у «Модели », задается окончательный вид их вывода. В веб-приложениях, созданных на основе MVC , «Представление » — это компонент, в котором генерируется и отображается HTML -код.

Представление также перехватывает действие пользователя, которое затем передается «Контроллеру ». Характерным примером этого является кнопка, генерируемая «Представлением ». Когда пользователь нажимает ее, запускается действие в «Контроллере».

Существует несколько распространенных заблуждений относительно компонента «Представление ». Например, многие ошибочно полагают, что «Представление » не имеет никакой связи с «Моделью », а все отображаемые данные передаются от «Контроллера ». В действительности такая схема потока данных не учитывает теорию, лежащую в основе MVC архитектуры. В своей статье Фабио Чеваско описывает этот некорректный подход на примере одного из нетрадиционных MVC PHP фреймворков:

«Чтобы правильно применять архитектуру MVC, между «Моделью» и «Представлением» не должно быть никакого взаимодействия: вся логика обрабатывается «Контроллером».

Кроме этого определение «Представления » как файла шаблона также является неточным. Но это не вина одного человека, а результат множества ошибок различных разработчиков, которые приводят общему заблуждению. После чего они неправильно объясняют это другим. На самом деле «Представление » это намного больше, чем просто шаблон. Но современные MVC -ориентированные фреймворки до такой степени впитали этот подход, что никто уже не заботится о том, поддерживается ли верная структура MVC или нет.

Компоненту «Представление » никогда не передаются данные непосредственно «Контроллером ». Между «Представлением » и «Контроллером » нет прямой связи — они соединяются с помощью «Модели ».

Контроллер

Его задача заключается в обработке данных, которые пользователь вводит и обновлении «Модели ». Это единственная часть схемы, для которой необходимо взаимодействие пользователя.

«Контроллер » можно определить, как сборщик информации, которая затем передается в «Модель » с последующей организацией для хранения. Он не содержит никакой другой логики, кроме необходимости собрать входящие данные. «Контроллер » также подключается только к одному «Представлению » и одной «Модели ». Это создает систему с односторонним потоком данных с одним входом и одним выходом в точках обмена данными.

«Контроллер » получает задачи на выполнение только когда пользователь взаимодействует с «Представлением », и каждая функция зависит от взаимодействия пользователя с «Представлением ». Наиболее распространенная ошибка разработчиков заключается в том, что они путают «Контроллер » со шлюзом, поэтому присваивают ему функции и задачи, которые относятся к «Представлению ».

Также распространенной ошибкой является наделение «Контроллера » функциями, которые отвечают только за обработку и передачу данных из «Модели » в «Представление ». Но согласно структуре MVC паттерна это взаимодействие должно осуществляться между «Моделью » и «Представлением ».

MVC в PHP

Напишем на PHP веб-приложение, архитектура которого основана MVC . Давайте начнем с примера каркаса:

string = "MVC + PHP = Awesome!"; } } controller = $controller; $this->model = $model; } public function output(){ return "

" . $this->model->string . "

"; } } model = $model; } }

У нас есть проект с несколькими основными классами для каждой части шаблона. Теперь нужно настроить взаимосвязь между ними:

output();

В приведенном выше примере PHP MVC нет никакого специфического функционала для контроллера, потому что в приложении не определены взаимодействия пользователя. Представление содержит весь функционал, так как наш пример предназначен лишь для демонстрации.

Давайте расширим пример, чтобы показать, как мы будем добавлять функционал контроллера, тем самым добавив в приложение взаимодействия:

string = “MVC + PHP = Awesome, click here!”; } } controller = $controller; $this->model = $model; } public function output() { return "

model->string . "

"; } } model = $model; } public function clicked() { $this->model->string = “Updated Data, thanks to MVC and PHP!”; } }

Мы расширили программу базовым функционалом. Настройка взаимодействий между компонентами теперь выглядит следующим образом:

{$_GET["action"]}(); } echo $view->output();



error: Content is protected !!