Радиолокационное синтезирование апертуры. Лазерная локация, доплеровские изображения и синтез апертуры

Синтезирование апертуры представляет собой технический прием, позволяющий существенно повысить разрешающую способность радиолокатора в поперечном относительно направления полета направлении и получить детальное изображение радиолокационной карты местности, над которой совершает полет ЛА. Режим формирования такой карты называется картографированием и применяется, например, в обзорно-сравнительных навигационных системах, для получения карт местности, и в других ситуациях. По качеству и детальности такие карты сравнимы с аэрофотоснимками, но в отличие от последних могут быть получёны при отсутствии оптической видимости земной поверхности (при полете, над облаками). Детальность радиолокационного изображения зависит от линейной разрешающей способности радиолокатора. В радиальном по отношению к радиолокатору направлении линейная разрешающая способность, т. е. разрешающая способность по дальности дR, определяется зондирующим сигналом, а в поперечном направлении (тангенциальная разрешающая способность) дl -- шириной ДНА радиолокатора и расстоянием до цели (рисунок 2.1) . Детальность радиолокационного изображения местности тем выше, чем меньше дR и дl.

Рисунок 2.1 Параметры, характеризующие детальность радиолокационного изображения

Рисунок 2.2 Диаграммы направленности радиолокатора бокового обзора

Задача уменьшения HR решается использованием зондирующих сигналов с малой длительностью импульсов или переходом к сложным сигналам (частотно-модулированным или фазоманипулированным). Однако уменьшения дl добиться не так просто. так как дl пропорциональна дальности R до цели и ширине ДНА, а в горизонтальной плоскости, где л-- длина волны, а ба -- продольный размер (длина). Основными путями повышения тангенциальной разрешающей способности являются применение в радиолокаторах вдоль фюзеляжных антенн и синтезирование апертуры антенны при движении ЛА.

Первый путь привел к разработке так называемых радиолокаторов бокового обзора (рисунок 2.2). В таких радиолокаторах тангенциальная разрешающая способность тем выше, чем больше продольный размер dф фюзеляжа ЛА. Поскольку lф больше диаметра фюзеляжа dф, от которого зависит обычно размер антенны da, то и детальность изображения в радиолокаторах с вдольфюзеляжными антеннами улучшается, хотя зависимость от дальности сохраняется.

Второй, более радикальный путь приводит к РСА при поступательном движении ЛА.

Принцип синтезирования апертуры. Пусть линейная ФАР размером (апертурой) L (рисунок 2.3, а) состоит из N+1 излучателей. Суммируя принятые облучателями сигналы, можно в каждый момент времени получать диаграмму ФАР с шириной . Если для обеспечения заданной ца требуется, то можно синтезировать ФАР, последовательно перемещая один излучатель вдоль этой апертуры с некоторой скоростью V, принимая отраженные от цели сигналы, запоминая их, а затем совместно обрабатывая (рисунок 3,6). При этом синтезируется апертура линейной антенны с эффективным размером L и ДНА шириной цс=л/L однако увеличиваются затраты времени на синтезирование tc = L/V и усложняется аппаратура радиолокатора.


Рисунок 2.3 Фазированная антенная решетка (а) и схема синтезирования апертуры при перемещении облучателя (б)

Пусть ЛА движется на некоторой высоте с постоянной скоростью V прямолинейно и параллельно земной поверхности (рисунок 2.4).

Рисунок 2.4 Взаимное положение цели и ЛА при синтезировании апертуры.

Антенна, имеющая ДНА шириной ца и повернутая на 90° к линии пути, последовательно проходит ряд положений i = --N/2; ...; --2; --1; 0; +1; +2; . . . +N/2, в которых принимает сигналы, отраженные от цели, находящейся в точке М на земной поверхности. При различных положениях антенны (при различных i) сигналы от одной и той же точки проходят разные расстояния, что приводит к изменению фазовых сдвигов этих сигналов, вызываемых разностью хода сигналов?R. Поскольку сигнал проходит R дважды; в направлении цели и от нее, то два сигнала, принятые при соседних положениях антенны, отличаются по фазе на:

В зависимости от того, компенсируются или нет при суммировании сигналов фазовые набеги Дц на отрезках ДRi, различают фокусированные и нефокусированные РСА. В первом случае обработка сводится к перемещению антенн, запоминанию сигналов, компенсации фазовых набегов и суммированию сигналов (см. рисунок 2.3, б) , а во втором -- к тем же операциям, но без компенсации фазовых набегов.

Структурная схема РСА. Основу РСА составляют когерентноимпульсные радиолокаторы, построенные по схеме с внутренней когерентностью (рисунок 2.5). Когерентный генератор КГ на частоте fп.ч служит для формирования в однополосном модуляторе зондирующего сигнала с частотой fо+fп.ч. Источником колебаний с частотой fо является ГРЧ . Зондирующий сигнал модулируется импульсной последовательностью с модулятора М. Усилитель мощности УМ представляет собой оконечный каскад передатчика. Обработка сигналов (запоминание, компенсация фаз, суммирование) обычно выполняется на низкой частоте. Поэтому в схеме предусматривают квадратурные каналы, каждый из которых начинается с соответствующего фазового детектора. Источником опорного напряжения для фазовых детекторов служит когерентный гетеродин КГ. Сигналы квадратурных каналов (сохраняющих информацию о фазе) подаются либо на устройство аналоговой записи УЗ, либо на устройство обработки в реальном масштабе времени УОС.

Рисунок 2.5 Структурная схема радиолокатора с синтезированием апертуры

Принципы обработки сигналов в РСА. При любом виде обработки необходимо покадровое запоминание информации о целях. Размеры кадра задаются по азимуту эффективным значением синтезируемой апертуры LЭф и дальностью обзора Rmin . . . Rmax (рисунок 2.6, а). Поскольку принимаемые при каждом положении антенны сигналы поступают на вход приемника с просматриваемой дистанции последовательно во времени, то и записываются они последовательно в каждый из N+1 азимутальных каналов, что условно показано стрелками на рисунке 2.6, б. При этом формируется соответствующий участку местности кадр изображения с размерами хк и Rx. Получить информацию-j6 угловом положении цели, т. е. о координате х, при синтезировании апертуры можно только при анализе отраженных от этой цели сигналов, записанных на интервале синтезирования LЭф. Поэтому информация с устройства записи считывается последовательно в каждом из п каналов дальности (рисунок 2.6, в).

Рисунок 2.6 Запоминаемый кадр местности (а), диаграммы записи (б) и считывания (в) сигналов

Техническое задание

Разработать РТС :

Тип РТС ……………....самолётная;

Назначение. ……………РЛС бокового обзора с синтезированной апертурой;

Тактико-технические характеристики разрабатываемой РТС:

1 Анализ технического задания

В самолётных РЛС существуют жёсткие ограничения на габариты антенн, что препятствует достижению разрешающей способности по азимуту.

Для преодоления этого препятствия используют один из двух методов, реализуемых в РЛС бокового обзора. В первом случае антенна располагается вдоль фюзеляжа, что позволяет существенно увеличить её размеры и улучшить за счёт этого разрешающую способность. При втором методе используется искусственное увеличение размеров антенны за счет, так называемого, синтезирования апертуры.

По техническому заданию требуется разработать самолётную РЛС бокового обзора с синтезированной апертурой. В таких РЛС антенна больших размеров устанавливается неподвижно вдоль фюзеляжа самолёта. Луч антенной системы направлен перпендикулярно оси самолёта. Обычно устанавливаются две антенны, лучи которых направлены вправо и влево от направления полета. Просмотр заданного участка земной поверхности происходит благодаря перемещению самого летательного аппарата во время полёта (рисунок 1).



Рисунок 1 – Принцип обзора пространства в направлении, перпендикулярном оси самолёта.

Принцип работы РЛС с синтезированием апертуры (РСА) основан на создании эквивалентных апертур с увеличенной эффективной длиной, что достигается с помощью специальных методов обработки сигналов, а не увеличением физических размеров апертуры реальной антенны. В РСА используется всего один излучающий антенны элемент (реальная антенна), который последовательно занимает положение вдоль траектории полёта. В каждом из этих положений излучаются и принимаются сигналы (Рисунок 2).

Отраженные от целей сигналы как амплитуда, так и фаза принятых сигналов.запоминаются в устройстве памяти,

Рисунок 2 – Принцип формирования искусственного (синтезированного) раскрыва.

После результирующего перемещения излучающего элемента на величину сигналы в запоминающем устройстве становятся весьма схожими с сигналами, которые принимались элементами реальной линейной решётки. Если сигналы в ЗУ обрабатывать по такому же алгоритму, что и при формировании реальной линейной решётки, то получим эффект приёма сигналов на антенну больших размеров (метод «синтезирования апертуры»).

Кроме того, в РСА сигналы в ЗУ можно селектировать по дальности и при необходимости сигналы разных дальностей можно обрабатывать различным образом (фокусировка).

При развороте самолет начинает крениться, в результате чего возникает ошибка измерения высоты. Чтобы исключить ошибку необходимо закрепить антенну на балансирующем устройстве, в результате работы которого главный лепесток диаграммы направленности антенны направляется перпендикулярно земной поверхности.

Обычно в РТС бокового обзора используют сигнал с импульсной модуляцией.

Антенна имеет косекансную диаграмму направленности.

Для того чтобы не ухудшать аэродинамических свойств самолета, антенну помещают под специальный обтекатель, который не препятствуют прохождению радиосигнала. В расчетах необходимо учесть, что самолет находится над разными типами земной поверхности, которые обладают различными отражающими свойствами.

2 Особенности построения некоторых блоков РЛС с синтезированной апертурой.

Антенна

Горизонтальный размер апертуры антенны РСЛ определяет линейную разрешающую способность по азимуту, практически достижимую в РЛС с синтезированием апертуры. При обработке сигналов принимается, что КНД реальной антенны при пролёте летательного аппарата остаётся постоянным. Следовательно, необходимо иметь стабилизацию ДН антенны, чтобы остаточные колебания луча были значительно меньше ширины ДН. В большинстве случаев антенна устанавливается в боковом направлении.

Приёмопередатчик

В РЛС с синтезированием апертуры должен обеспечивать высокую когерентность сигналов. Следовательно, предъявляются более жесткие требования к стабильности частоты генераторов и параметров элементов. Выходной сигнал когерентной РЛС представляет собой напряжение на выходе синхронного детектора. Выходной сигнал является биполярным видеосигналом, в котором уровень опорного смещения соответствует нулевому смещению сигнала.

Запись сигналов и запоминание.

Характерной особенностью РСА является необходимость запоминания принимаемых сигналов, так как необходимые для формирования синтезированной ДН сигналы поступают на вход не одновременно, а на протяжении определённого интервала времени. Обработка запомненных сигналов и позволяет получить высокую разрешающую способность. Один и тот же сигнал используется для формирования выходных сигналов для большого числа точек радиолокационного изображения. Требования к ёмкости устройств памяти весьма высоки. В РЛС с высокой разрешающей способностью требуется большой объём памяти, поэтому в них обычно используют фотографическое запоминающее устройство.


Владельцы патента RU 2397509:

Изобретение относится к области радиотехники, в частности к области техники нелинейной радиолокации, и может использоваться для поиска и обнаружения объектов с нелинейными электрическими свойствами. Достигаемый технический результат изобретения заключается в реализации алгоритма синтезирования апертуры антенны в нелинейной радиолокационной станции (РЛС) и достижении углового разрешения, близкого к потенциальному. Сущность изобретения заключается в измерении средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории вдоль осей абсцисс, ординат, аппликат и реализации в каждом из каналов обработки эхо-сигналов нелинейной РЛС известного алгоритма синтезирования апертуры антенны с учетом результатов измерения. 3 ил.

Изобретение относится к области радиотехники, в частности к области техники нелинейной радиолокации, и может использоваться для поиска и обнаружения объектов с нелинейными электрическими свойствами (ОЭНС).

Известна РСА , состоящая из последовательно соединенных антенного устройства, приемопередатчика, фазовых детекторов, аналого-цифровых преобразователей, цифровой системы обработки, процессора системы индикации, системы индикации, а также системы регистрации и системы передачи по широкополосному каналу, принцип действия которой основан на формировании синтезированного раскрыва антенны больших размеров с использованием реальной антенны малых размеров. При этом для уменьшения влияния случайных пространственных отклонений носителя РСА от заданной траектории (траекторных нестабильностей) на результаты ее функционирования применяется система компенсации траекторных нестабильностей , основанная на комплексном использовании двух инерциальных навигационных систем - штатной инерциальной навигационной системы с коррекцией от радиотехнических датчиков (ГЛОНАСС, ДИСС или РЛС в режиме измерения скорости и угла сноса) и широкополосной инерциальной навигационной системы с системой акселерометров и датчиков угловых скоростей (микронавигация). Однако РСА не позволяет вести поиск и обнаружение ОЭНС, так как обработка эхо-сигналов от радиолокационных целей производится только на несущей частоте зондирующего сигнала (ЗС) ω 0 .

Наиболее близкой по технической сущности (прототипом к предполагаемому изобретению) является нелинейная РЛС (НРЛС), например , состоящая из передатчика, передающей антенны и двух идентичных каналов обработки сигналов на частотах второй 2ω 0 и третьей 3ω 0 гармоник ЗС, каждый из которых содержит последовательно соединенные приемную антенну и приемник, а также устройства индикации. Принцип работы НРЛС основан на приеме сигналов отклика от ОЭНС на частотах 2ω 0 и 3ω 0 , их обработке и индикации уровней. Это обеспечивается тем, что обычно ОЭНС с полупроводниковыми компонентами имеют на второй гармонике уровень сигналов отклика на 20-30 дБ более высокий, чем на третьей гармонике . Для ОЭНС контактного типа, как правило, выполняется обратное соотношение. Недостатками нелинейной РЛС являются отсутствие учета влияния траекторных нестабильностей на процесс ее функционирования и ненадежность признака сравнения уровней сигналов отклика от ОЭНС на второй и третьей гармониках ЗС вследствие сильной зависимости изменения рассеянной ОЭНС мощности на гармониках ЗС от положения ОЭНС относительно направления зондирования и номера гармоники ЗС .

Задача, на решение которой направлена заявляемая нелинейная РЛС с синтезированной апертурой антенны, состоит в повышении угловой разрешающей способности нелинейной РЛС.

Технический результат изобретения выражается в реализации алгоритма синтезирования апертуры антенны в нелинейной РЛС и достижении углового разрешения, близкого к потенциальному.

Технический результат достигается тем, что в известной НРЛС, состоящей из передатчика, передающей антенны и двух идентичных каналов обработки сигналов на частотах второй 2ω 0 и третьей 3ω 0 гармоник ЗС, каждый из которых содержит последовательно соединенные приемную антенну и приемник, а также устройства индикации, дополнительно введены опорный генератор, синтезатор частот и блок компенсации траекторных нестабильностей, предназначенный для формирования соответствующего корректирующего сигнала рассогласования на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, а в каждый из каналов - устройство сдвига фазы, первый и второй фазовые детекторы, первый и второй аналого-цифровые преобразователи, первый вычислитель опорной функции, предназначенный для формирования синусной составляющей опорной функции, второй вычислитель опорной функции, предназначенный для формирования косинусной составляющей опорной функции, цифровая система обработки, предназначенная для формирования радиолокационного изображения объектов с нелинейными электрическими свойствами, при этом выход опорного генератора подключен ко входу синтезатора частот и ко вторым входам приемников первого и второго канала, первый выход синтезатора частот подключен ко входу передатчика, выход которого соединен со входом передающей антенны, второй выход синтезатора частот подключен в каждом канале ко второму входу первого фазового детектора и входу устройства сдвига фазы, выход устройства сдвига фазы каждого канала соединен со вторым входом второго фазового детектора соответствующего канала, выход приемника каждого канала подключен к первым входам первого и второго фазовых детекторов соответствующего канала, выходы которых соединены соответственно со входами первого и второго аналого-цифровых преобразователей соответствующих каналов, выходы которых в каждом из каналов подключены соответственно к первому и второму входам цифровой системы обработки соответствующего канала, входы первого и второго вычислителей опорной функции каждого канала соединены с выходом блока компенсации траекторных нестабильностей, выходы первого и второго вычислителей опорной функции каждого канала подключены соответственно к третьему и четвертому входам цифровой системы обработки соответствующего канала, выходы цифровых систем обработки первого и второго каналов соединены соответственно с первым и вторым входами устройства индикации, а блок компенсации траекторных нестабильностей содержит генератор тактовых импульсов, устройство масштабирования, устройство определения направления перемещения по осям прямоугольной системы координат на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, таймер, запоминающее устройство, блок ключей, состоящий из трех ключей, устройство вычитания, блок суммирования, состоящий из трех устройств суммирования, блок запоминающих устройств, состоящий из трех запоминающих устройств, блок масштабирования, состоящий из трех устройств масштабирования, блок умножения кодов, состоящий из трех умножителей кодов, сумматор и преобразователь кодов, при этом генератор тактовых импульсов и устройство определения направления перемещения по осям прямоугольной системы координат соединены последовательно, сумматор, преобразователь кодов, устройство масштабирования и запоминающее устройство соединены последовательно, кроме того, первый, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат подключены к первым входам соответствующих ключей блока ключей, вторые входы которых соединены с выходом таймера, первый выход устройства определения направления перемещения по осям прямоугольной системы координат соединен также со вторым входом устройства вычитания, выходы первого, второго и третьего ключей блока ключей соединены с первыми входами соответствующих устройств суммирования блока суммирования, выходы которых подключены ко входам соответствующих запоминающих устройств блока запоминающих устройств, выходы которых соединены со вторыми входами соответствующих устройств суммирования блока суммирования и со входами соответствующих устройств масштабирования блока масштабирования, выход каждого устройства масштабирования блока масштабирования подключен к первому и второму входам соответствующих умножителей кодов блока умножения кодов, выходы первого, второго и третьего умножителей кодов блока умножения кодов соединены с соответствующими входами сумматора, выход запоминающего устройства подключен к первому входу устройства вычитания, а выход устройства вычитания, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат, выход преобразователя кодов являются соответственно первым, вторым, третьим и четвертым выходами блока компенсации траекторных нестабильностей.

Сущность изобретения заключается в измерении средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории вдоль осей абсцисс, ординат, аппликат и реализации в каждом из каналов обработки эхо-сигналов нелинейной РЛС известного алгоритма синтезирования апертуры антенны с учетом результатов измерения, что позволяет достичь угловой разрешающей способности, близкой к потенциальной.

Структурная схема предложенной нелинейной РЛС с синтезированной апертурой антенны приведена на фиг.1.

Предложенная нелинейная РЛС с синтезированной апертурой антенны состоит из передатчика 5, передающей антенны 1, приемных антенн первого и второго каналов 2 и 4, приемников первого и второго каналов 7 и 8, устройства индикации 26, опорного генератора 3, синтезатора частот 6, блока компенсации траекторных нестабильностей 19, устройств сдвига фазы первого и второго каналов 9 и 10, первого и второго фазовых детекторов первого канала 11 и 12, первого и второго фазовых детекторов второго канала 13 и 14, первого и второго аналого-цифровых преобразователей первого канала 15 и 16, первого и второго аналого-цифровых преобразователей второго канала 17 и 18, первого и второго вычислителей опорной функции первого канала 20 и 21, первого и второго вычислителей опорной функции второго канала 22 и 23, цифровых систем обработки первого и второго каналов 24 и 25, соединенных, как показано на фиг.1.

Передатчик 5 формирует зондирующий сигнал на частоте ω 0 с заданными параметрами (мощность, вид модуляции и т.д.). Передающая антенна 1 предназначена для излучения зондирующего сигнала на частоте ω 0 . Приемные антенны первого и второго каналов 2 и 4 служат для приема эхо-сигналов от ОЭНС на частотах 2ω 0 и 3ω 0 соответственно. Приемники первого и второго каналов 7 и 8 переносят сигналы, принятые на частотах 2ω 0 и 3ω 0 , на промежуточную частоту ω пр и усиливают их. Опорный генератор 3 вырабатывает сигнал стабильной частоты ω ог. Синтезатор частот 6 формирует на своих первом и втором выходах соответственно сигналы несущей ω 0 и промежуточной ω пр частот. Устройства сдвига фазы первого и второго каналов 9 и 10 осуществляют сдвиг фазы опорного сигнала в каждом из каналов на π/2. Первые фазовые детекторы первого и второго каналов 11 и 13 выделяют синусные составляющие сигналов в соответствующих каналах, а вторые фазовые детекторы первого и второго каналов 12 и 14 - косинусные. Первый и второй аналого-цифровые преобразователи каждого канала 15, 16, 17 и 18 предназначены для преобразования аналоговых сигналов в цифровые. Блок компенсации траекторных нестабильностей 19 отслеживает случайные отклонения носителя НРЛС от заданной траектории и формирует соответствующий сигнал рассогласования для коррекции опорной функции. Первые вычислители опорных функций первого и второго каналов 20 и 22 формируют синусные составляющие опорных функций, вторые вычислители опорных функций первого и второго каналов 21 и 23 - косинусные составляющие опорных функций соответствующих каналов с учетом сигналов рассогласования, поступающих из блока компенсации траекториях нестабильностей 19. Цифровые системы обработки первого и второго каналов 24 и 25 служат для формирования РЛИ ОЭНС по сигналам, принятым на частотах 2ω 0 и 3ω 0 . Устройство индикации 26 необходимо для отображения РЛИ с требуемой яркостью, динамическим диапазоном и масштабом.

Заявляемая нелинейная РЛС с синтезированной апертурой антенны работает следующим образом. В течение временного интервала синтезирования апертуры антенны T s обеспечивается прямолинейное движение носителя нелинейной РЛС с постоянной скоростью (наиболее важный для практики случай) . Для обеспечения когерентности сигнал опорного генератора 3 на частоте ω ог подается на вторые входы приемников первого и второго каналов 7 и 8, являющиеся входами внешнего опорного генератора, а также на вход синтезатора частот 6, который формирует сигналы несущей ω 0 и промежуточной ω пр частот. По сигналу на частоте ω 0 , поступающему с первого выхода синтезатора частот 6 на вход передатчика 5, формируется ЗС с требуемыми параметрами на частоте ω 0 . Сформированный таким образом сигнал подается на вход передающей антенны 1 и излучается в заданную область пространства. Сигнал на промежуточной частоте ω пр со второго выхода синтезатора частот 6 поступает на вторые входы первых фазовых детекторов первого и второго каналов 11 и 13, а также на входы устройств сдвига фазы первого и второго каналов 9 и 10. Кроме того, сигнал на промежуточной частоте ω пр поступает также с выхода приемника каждого канала на первый вход первого фазового детектора соответствующего канала. Выходной сигнал устройства сдвига фазы каждого канала 9 и 10 подается на второй вход второго фазового детектора соответствующего канала 12 и 14. Так как опорные сигналы на промежуточной частоте ω пр на вторых входах первого и второго фазовых детекторов каждого канала 11 и 12, 13 и 14 имеют сдвиг по фазе π/2, на выходах первых фазовых детекторов каждого канала 11 и 13 формируются синусные составляющие поступающих из приемников первого и второго каналов 7 и 8 сигналов, а на выходах вторых фазовых детекторов 12 и 14 - косинусные составляющие. Сформированные квадратурные составляющие преобразуются в цифровой вид с помощью первого и второго аналого-цифровых преобразователей каждого канала 15, 17 и 16, 18 и подаются соответственно на первый и второй входы цифровой системы обработки соответствующего канала 24 и 25. Сигнал рассогласования, вырабатываемый блоком компенсации траекторных нестабильностей 19, поступает в каждом из каналов на входы первого и второго вычислителей опорной функции 20, 22 и 21, 23. Первые и вторые вычислители опорной функции каждого канала 20, 22 и 21, 23 формируют соответственно синусную и косинусную составляющие опорной функции, которые поступают соответственно на третий и четвертый входы цифровой системы обработки соответствующего канала 24 и 25. В цифровых системах обработки первого и второго каналов 24 и 25 реализуется известный алгоритм синтезирования апертуры антенны и в результате формируются РЛИ ОЭНС по сигналам, принятым на частотах 2ω 0 и 3ω 0 соответственно. Сформированные таким образом РЛИ поступают с выходов цифровых систем обработки первого и второго каналов 24 и 25 на соответствующие входы устройства индикации 26, с помощью которого производится визуальное отображение РЛИ.

Блок компенсации траекторных нестабильностей может быть выполнен, например, в виде устройства, структурная схема которого приведена на фиг.2.

Блок компенсации траекторных нестабильностей включает генератор тактовых импульсов 1, устройство масштабирования 2, устройство определения направления перемещения по осям прямоугольной системы координат 3, таймер 4, запоминающее устройство 5, блок ключей 6, устройство вычитания 7, блок суммирования 8, блок запоминающих устройств 9, блок масштабирования 10, блок умножения кодов 11, сумматор 12, преобразователь кодов 13, соединенных, как показано на фиг.2.

Генератор тактовых импульсов 1 предназначен для формирования последовательности импульсов заданной длительности τ и с периодом Т и. Таймер 4 служит для поддержания блока ключей 6 в открытом состоянии в течение заданного интервала времени T t . Устройство определения направления перемещения по осям прямоугольной системы координат 3 формирует на первом, втором и третьем выходах сигналы, соответствующие перемещению носителя НРЛС за время Т и вдоль осей абсцисс Δx i , ординат Δy i и аппликат Δz i соответственно, где Блок ключей 6 обеспечивает прохождение сигналов с первого, второго и третьего входов устройства определения направления перемещения по осям прямоугольной системы координат 3 на выход соответствующего ключа блока ключей 6. Блок суммирования 8 служит для суммирования сигналов, имеющихся на первых и вторых входах каждого устройства суммирования блока суммирования 8. Блок запоминающих устройств 9 необходим для хранения результата суммы, полученного в блоке суммирования 8. Блок масштабирования 10 усредняет результаты суммирования сигналов и формирует на первом, втором и третьем выходах сигналы, соответствующие средним значениям перемещений носителя НРЛС вдоль осей абсцисс ординат и аппликат Блок умножения кодов 11 предназначен для возведения в квадрат значений и Сумматор 12 служит для реализации математической операции

Преобразователь кодов 13 выполняет математическую операцию вычисления средней скорости перемещения носителя НРЛС

Устройство масштабирования 2 необходимо для вычисления эталонного значения перемещения носителя НРЛС вдоль оси абсцисс В запоминающем устройстве 5 хранится полученное значение Δx 0 . В устройстве вычитания 7 осуществляется математическая операция вычитания значения текущего перемещения носителя НРЛС вдоль оси абсцисс прямоугольной системы координат Δx i из эталонного значения Δх 0 .

Блок компенсации траекторных нестабильностей работает следующим образом. Сначала измеряется средняя скорость движения носителя НРЛС.

Включение режима измерения скорости осуществляется вручную с помощью включения таймера 4, по окончании работы которого производится автоматическое отключение, т.е. продолжительность режима измерения значения определяется временем T t . В режиме измерения средней скорости тактовые импульсы длительностью τ и с периодом Т и, вырабатываемые генератором тактовых импульсов 1, поступают на вход устройства определения направления перемещения по осям прямоугольной системы координат 3, которое при движении носителя НРЛС формирует на своих первом, втором и третьем выходах значение перемещений вдоль осей абсцисс Δx i , ординат Δу i и аппликат Δz i соответственно. В течение времени T t сигнал с выхода таймера 4 поддерживает блок ключей 6 в открытом состоянии, в результате чего сигналы с первого, второго и третьего выходов устройства определения направления перемещения по осям прямоугольной системы координат 3, поступающие на первые входы соответствующих ключей блока ключей 6, подаются на первые входы соответствующих устройств суммирования блока суммирования 8. Блок суммирования 8 совместно с блоком запоминающих устройств 9 суммируют цифровые коды перемещений вдоль осей абсцисс, ординат и аппликат, которые затем с выходов первого, второго и третьего запоминающих устройств второго блока запоминающих устройств 9 соответственно поступают на входы соответствующих устройств масштабирования блока масштабирования 10, в которых осуществляется умножение поступивших сигналов на цифровой код величины и получение в результате средних значений перемещений за интервал времени Т и вдоль осей абсцисс ординат и аппликат Полученные таким образом сигналы поступают затем в блок умножения кодов 11 и сумматор 12 с целью получения суммы квадратов указанных сигналов которая поступает в преобразователь кодов 13, где в соответствии с (1) преобразуется в значение средней скорости Полученное значение подается на вход устройства масштабирования 2, где путем его умножения на величину Т и формируется эталонное значение перемещения носителя НРЛС вдоль оси абсцисс Сигнал Δx 0 с выхода устройства масштабирования 2 поступает на вход запоминающего устройства 5, где запоминается и хранится до момента следующего определения средней скорости По окончании измерения при функционировании нелинейной РЛС с синтезированной апертурой антенны, сигнал Δх 0 с выхода запоминающего устройства 5 подается на первый вход устройства вычитания 7, на второй вход которого поступает сигнал с первого выхода устройства определения направления перемещения по осям прямоугольной системы координат 3. В устройстве вычитания 7 осуществляются математические операции формирования сигналов, пропорциональных отклонению параметров движения носителя НРЛС вдоль оси абсцисс прямоугольной системы координат от заданных параметров опорной траектории δx i =Δx 0 -Δx i .

Потенциальное улучшение К угловой разрешающей способности НРЛС при синтезировании апертуры антенны было теоретически исследовано в соответствии с выражением

где Δl p и Δl - соответственно угловые разрешающие способности НРЛС без использования и с использованием алгоритма синтезирования апертуры антенны; λ ЗС - длина волны ЗС; R - расстояние между НРЛС и ОЭНС; d - размер реальной приемной антенны; - номер гармоники ЗС; - скорость движения носителя НРЛС; θ н - угол наблюдения ОЭНС. Расчеты, проведенные для случая использования в нелинейном локаторе «Люкс» метода синтезирования апертуры антенны при размерах реальных приемных антенн d=0,25 м для режима бокового обзора пространства (θ н =π/2), а также при T s =2 с, R=3 м, λ ЗС =0,3 м, свидетельствуют об улучшении углового разрешения на второй и третьей гармониках ЗС в 32 и 48 раз соответственно.

Эффективность функционирования блока компенсации траекторных нестабильностей можно оценить, воспользовавшись оценкой искажений РЛИ ОЭНС при отсутствии компенсации траекторных нестабильностей для случая прямолинейного равномерного движения носителя вдоль координаты х при фиксированных координатах у=у 0 , z=z 0 . В этих целях рассчитаем импульсные отклики нелинейной РЛС с синтезированной апертурой антенны (РЛИ ОЭНС) для случаев отсутствия и наличия случайных отклонений носителя НРЛС от заданной траектории

где U(t+τ) - траекторный сигнал; T s - временной интервал СА антенны; τ - временной сдвиг; h(t) - опорная функция.

В качестве опорной h(t) выбирается взвешенная функция, комплексно сопряженная с сигналом, отраженным от нелинейной цели

где H(t) - действительная весовая функция; - изменение текущего расстояния между НРЛС и ОЭНС.

Полагая в случае компенсации траекторных нестабильностей δx 1 =0, а в случае ее отсутствия - и задаваясь, например, значениями H(t)=1, T s =2 с, R=3 м, λ ЗС =0,3 м, n=2, х=1 м, x 0 =0 м, получим в соответствии с (3) импульсные отклики J 1 (r) и представленные после нормировки соответствующими графическими зависимостями 1 и 2 на фиг.3. Как показывает расчет, ширина главного лепестка импульсного отклика в 1,15 раза больше, чем J 1 (τ). Это означает, что блок компенсации траекторных нестабильностей, выполненный в виде устройства, структурная схема которого приведена на фиг.2, при заданных условиях позволяет улучшить разрешающую способность нелинейной РЛС с синтезированной апертурой антенны по угловой координате на 15%.

Таким образом, в предложенной нелинейной РЛС с синтезированной апертурой антенны повышается угловая разрешающая способность за счет формирования антенного раскрыва больших размеров на заданной траектории перемещения носителя НРЛС, а блок компенсации траекторных нестабильностей, выполненный в виде устройства, структурная схема которого приведена на фиг.2, обеспечивает потенциально достижимую угловую разрешающую способность (ее потенциальное улучшение в соответствии с выражением (2)) за счет уменьшения искажений РЛИ, обусловленных расширением главного лепестка импульсного отклика (3).

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестна нелинейная РЛС с синтезированной апертурой антенны, отличающаяся от известной НРЛС, состоящей из передатчика, передающей антенны и двух идентичных каналов обработки сигналов на частотах второй 2ω 0 и третьей 3ω 0 гармоник ЗС, каждый из которых содержит последовательно соединенные приемную антенну и приемник, а также устройства индикации, тем, что дополнительно введены опорный генератор, синтезатор частот и блок компенсации траекторных нестабильностей, предназначенный для формирования соответствующего корректирующего сигнала рассогласования на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, а в каждый из каналов - устройство сдвига фазы, первый и второй фазовые детекторы, первый и второй аналого-цифровые преобразователи, первый вычислитель опорной функции, предназначенный для формирования синусной составляющей опорной функции, второй вычислитель опорной функции, предназначенный для формирования косинусной составляющей опорной функции, цифровая система обработки, при этом выход опорного генератора подключен ко входу синтезатора частот и ко вторым входам приемников первого и второго канала, первый выход синтезатора частот подключен ко входу передатчика, выход которого соединен со входом передающей антенны, второй выход синтезатора частот подключен в каждом канале ко второму входу первого фазового детектора и входу устройства сдвига фазы, выход устройства сдвига фазы каждого канала соединен со вторым входом второго фазового детектора соответствующего канала, выход приемника каждого канала подключен к первым входам первого и второго фазовых детекторов соответствующего канала, выходы которых соединены соответственно со входами первого и второго аналого-цифровых преобразователей соответствующих каналов, выходы которых в каждом из каналов подключены соответственно к первому и второму входам цифровой системы обработки соответствующего канала, входы первого и второго вычислителей опорной функции каждого канала соединены с выходом блока компенсации траекторных нестабильностей, выходы первого и второго вычислителей опорной функции каждого канала подключены соответственно к третьему и четвертому входам цифровой системы обработки соответствующего канала, выходы цифровых систем обработки первого и второго каналов соединены соответственно с первым и вторым входами устройства индикации, а блок компенсации траекторных нестабильностей содержит генератор тактовых импульсов, устройство масштабирования, устройство определения направления перемещения по осям прямоугольной системы координат на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, таймер, запоминающее устройство, блок ключей, состоящий из трех ключей, устройство вычитания, блок суммирования, состоящий из трех устройств суммирования, блок запоминающих устройств, состоящий из трех запоминающих устройств, блок масштабирования, состоящий из трех устройств масштабирования, блок умножения кодов, состоящий из трех умножителей кодов, сумматор и преобразователь кодов, при этом генератор тактовых импульсов и устройство определения направления перемещения по осям прямоугольной системы координат соединены последовательно, сумматор, преобразователь кодов, устройство масштабирования и запоминающее устройство соединены последовательно, кроме того, первый, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат подключены к первым входам соответствующих ключей блока ключей, вторые входы которых соединены с выходом таймера, первый выход устройства определения направления перемещения по осям прямоугольной системы координат соединен также со вторым входом устройства вычитания, выходы первого, второго и третьего ключей блока ключей соединены с первыми входами соответствующих устройств суммирования блока суммирования, выходы которых подключены ко входам соответствующих запоминающих устройств блока запоминающих устройств, выходы которых соединены со вторыми входами соответствующих устройств суммирования блока суммирования и со входами соответствующих устройств масштабирования блока масштабирования, выход каждого устройства масштабирования блока масштабирования подключен к первому и второму входам соответствующих умножителей кодов блока умножения кодов, выходы первого, второго и третьего умножителей кодов блока умножения кодов соединены с соответствующими входами сумматора, выход запоминающего устройства подключен к первому входу устройства вычитания, а выход устройства вычитания, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат, выход преобразователя кодов являются соответственно первым, вторым, третьим и четвертым выходами блока компенсации траекторных нестабильностей.

Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что нелинейная РЛС с синтезированной апертурой антенны позволяет достичь угловой разрешающей способности, близкой к потенциальной.

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы типовые радиотехнические узлы и устройства, применяемые в РСА , а также оборудование и материалы СВЧ-диапазона широко распространенной технологии .

Блок компенсации траекторных нестабильностей может быть выполнен с использованием типовых импульсных и цифровых устройств .

Так, устройство определения направления перемещения по осям прямоугольной системы координат может быть выполнено, например, на базе оптического манипулятора типа «мышь» при условии фиксации координаты у=у 0 =h 0 , где h 0 - высота размещения плоской поверхности для перемещения оптического манипулятора типа «мышь» над уровнем пола в помещении, где используется нелинейная РЛС с синтезированной апертурой антенны. Генератор тактовых импульсов может быть построен как транзисторный блокинг-генератор или как блокинг-генератор на интегральных микросхемах . Для реализации блока ключей могут быть избраны транзисторные ключи . Таймер выполняется однотактным . Основой запоминающего устройства и блока запоминающих устройств могут служить полупроводниковые оперативные или постоянные запоминающие устройства. Сумматор и блок суммирования могут быть построены с использованием схемы сумматора параллельного действия . Блок масштабирования, устройство масштабирования и преобразователь кодов могут быть выполнены по известной схеме преобразователя кодов . Устройство вычитания предполагается построить на базе сумматоров, осуществляющих вычитание . Блок умножения кодов выполняется на базе известных устройств для умножения кодов .

Источники информации

1. Антипов В.Н., Горяинов В.Т., Кулин А.Н. и др. Радиолокационные станции с цифровым синтезированием апертуры антенны. / Под ред. В.Т.Горяинова. - М.: Радио и связь, 1988.

2. Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. - М.: Радиотехника, 2005.

3. Нелинейный локатор «Люкс». Техническое описание и инструкция по эксплуатации. - М.: Новоком, 2005.

4. Горбачев А.А., Колданов А.П., Ларцов С. В., Тараканков С.П., Чигин Е.П. Признаки распознавания нелинейных рассеивателей электромагнитных волн // Нелинейная радиолокация. Сборник статей. Часть 1. / Под. Ред. Горбачева А.А., Колданова А.П., Потапова А.А., Чигина Е.П. - М.: Радиотехника, 2005. - С.15-23.

5. Семенов Д.В., Ткачев Д.В. Нелинейная радиолокация: концепция NR // Специальная техника. / НИИ специальной техники МВД России, 1999, №1-2. - С.17-22.

6. Кондратенков Г.С., Потехин В.А., Реутов А.П., Феоктистов Ю.А. Радиолокационные станции обзора Земли. / Под ред. Г.С.Кондратенкова. - М.: Радио и связь, 1983.

7. Гольденберг Л.М. Импульсные и цифровые устройства: Учебник для институтов связи. - М.: Связь, 1973.

8. Лебедев О.Н., Сидоров А.М. Импульсные и цифровые устройства: Цифровые узлы и их проектирование на микросхемах. - Л.: ВАС, 1980.

9. Справочник по радиолокации. / Под ред. М.Сколника, Нью-Йорк, 1970: Пер. с англ. (в четырех томах). / Под общей ред. К.Н.Трофимова; Том 2. Радиолокационные антенные устройства. - М.: Сов. радио, 1979.

10. Дулин В.Н. Электронные и квантовые приборы СВЧ: Учебное пособие для студентов высших технических учебных заведений. Издание 2-е, переработанное. - М.: Энергия, 1972.

11. С точки зрения оптических мышей…//URL:http://www.iXBT.com.

12. Симонович С.В. и др. Большая книга персонального компьютера. - М.: ОЛМА Медиа Груп, 2007.

13. Браммер Ю.А. Импульсные и цифровые устройства: Учеб. для студентов электрорадиоприборостроительных сред. спец. учеб. заведений. / Ю.А.Браммер, И.Н.Пащук. - 6-е изд., перераб. и доп. - М.: Высшая школа, 2002.

Нелинейная радиолокационная станция (РЛС) с синтезированной апертурой антенны, состоящая из передатчика, передающей антенны и двух идентичных каналов обработки сигналов на частотах второй 2ω 0 и третьей 3ω 0 гармоник зондирующего сигнала (ЗС), каждый из которых содержит последовательно соединенные приемную антенну и приемник, а также устройство индикации, отличающаяся тем, что дополнительно введены опорный генератор, синтезатор частот и блок компенсации траекторных нестабильностей, предназначенный для формирования соответствующего корректирующего сигнала рассогласования на основании измеренной средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, а в каждый из каналов - устройство сдвига фазы, первый и второй фазовые детекторы, первый и второй аналого-цифровые преобразователи, первый вычислитель опорной функции, предназначенный для формирования синусной составляющей опорной функции, второй вычислитель опорной функции, предназначенный для формирования косинусной составляющей опорной функции, цифровая система обработки, предназначенная для формирования радиолокационного изображения объекта с нелинейными электрическими свойствами, при этом выход опорного генератора подключен ко входу синтезатора частот и ко вторым входам приемников первого и второго канала, первый выход синтезатора частот подключен ко входу передатчика, выход которого соединен со входом передающей антенны, второй выход синтезатора частот подключен в каждом канале ко второму входу первого фазового детектора и входу устройства сдвига фазы, выход устройства сдвига фазы каждого канала соединен со вторым входом второго фазового детектора соответствующего канала, выход приемника каждого канала подключен к первым входам первого и второго фазовых детекторов соответствующего канала, выходы которых соединены соответственно со входами первого и второго аналого-цифровых преобразователей соответствующих каналов, выходы которых в каждом из каналов подключены соответственно к первому и второму входам цифровой системы обработки соответствующего канала, входы первого и второго вычислителей опорной функции каждого канала соединены с выходом блока компенсации траекторных нестабильностей, выходы первого и второго вычислителей опорной функции каждого канала подключены соответственно к третьему и четвертому входам цифровой системы обработки соответствующего канала, выходы цифровых систем обработки первого и второго каналов соединены соответственно с первым и вторым входами устройства индикации, а блок компенсации траекторных нестабильностей содержит генератор тактовых импульсов, устройство масштабирования, устройство определения направления перемещения по осям прямоугольной системы координат на основании измерений средней скорости движения и случайных отклонений носителя нелинейной РЛС от заданной траектории, таймер, запоминающее устройство, блок ключей, состоящий из трех ключей, устройство вычитания, блок суммирования, состоящий из трех устройств суммирования, блок запоминающих устройств, состоящий из трех запоминающих устройств, блок масштабирования, состоящий из трех устройств масштабирования, блок умножения кодов, состоящий из трех умножителей кодов, сумматор и преобразователь кодов, при этом генератор тактовых импульсов и устройство определения направления перемещения по осям прямоугольной системы координат соединены последовательно, сумматор, преобразователь кодов, устройство масштабирования и запоминающее устройство соединены последовательно, кроме того, первый, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат подключены к первым входам соответствующих ключей блока ключей, вторые входы которых соединены с выходом таймера, первый выход устройства определения направления перемещения по осям прямоугольной системы координат соединен также со вторым входом устройства вычитания, выходы первого, второго и третьего ключей блока ключей соединены с первыми входами соответствующих устройств суммирования блока суммирования, выходы которых подключены ко входам соответствующих запоминающих устройств блока запоминающих устройств, выходы которых соединены со вторыми входами соответствующих устройств суммирования блока суммирования и со входами соответствующих устройств масштабирования блока масштабирования, выход каждого устройства масштабирования блока масштабирования подключен к первому и второму входам соответствующих умножителей кодов блока умножения кодов, выходы первого, второго и третьего умножителей кодов блока умножения кодов соединены с соответствующими входами сумматора, выход запоминающего устройства подключен к первому входу устройства вычитания, а выход устройства вычитания, второй и третий выходы устройства определения направления перемещения по осям прямоугольной системы координат, выход преобразователя кодов являются соответственно первым, вторым, третьим и четвертым выходами блока компенсации траекторных нестабильностей.

АПЕРТУРНЫЙ СИНТЕЗ, метод получения высокого углового разрешения с помощью синтеза результатов измерений, выполняемых радиоинтерферометром, состоящим из двух малых апертур, перемещающихся в пределах большой апертуры, и корреляционного (перемножающего) приёмника. Результат измерения методом апертурного синтеза аналогичен измерениям с антенной большой апертуры. При апертурном синтезе выполняется большое количество измерений при различных положениях элементов и результаты суммируются с определёнными весами и фазами.

Метод апертурного синтеза предложен в 1952 году М. Райлом, исследовавшим с его помощью радиоструктуру галактик. В 1974 году Райл совместно с Э. Хьюишем были удостоены Нобелевской премии «за новаторские исследования в радиоастрофизике». Наибольшее распространение апертурный синтез получил в радиоастрономии и радиолокации. В радиоастрономии апертурный синтез используется в связи с задачами исследования углового распределения интенсивности излучения радиоисточника с тонкой структурой от угловых минут до долей секунд. Для таких исследований нужны антенны с отношением d/λ (d - линейный размер апертуры, λ - длина волны) порядка 10 3 —10 6 , поэтому для сантиметрового диапазона радиоволн d должно быть порядка сотен метров и более. Естественно, обычные антенны с такой апертурой создать невозможно, поэтому апертуру «синтезируют», проводя измерения в отдельных точках, расположенных внутри этой синтезированной апертуры, и выполняя соответствующую обработку измерений. В результате достигается высокое угловое разрешение.

При использовании метода апертурного синтеза большая антенна разбивается на N элементов. Падающие волны, отразившись от каждого элемента, попадают в фокус антенны в фазе. Поэтому высокочастотное напряжение V(t) в фокусе может быть записано в виде суммы составляющих ΔV i (t) от отдельный элементов:

Мощность Р на выходе приёмника большой антенны пропорциональна среднему значению квадрата напряжения:

Из формулы (2) видно, что результат измерений содержит слагаемые, зависящие от сигналов, получаемых только от пар элементов. Каждое слагаемое может быть измерено с помощью двух малых антенн размером, равным элементу апертуры, находящихся в положениях i и k, и корреляционного (перемножающего) приёмника. Если наблюдаемый участок неба не содержит переменных источников, то такой интерферометр можно использовать для последовательного измерения членов ряда (2).

Отрезок линии восток-запад на поверхности Земли, видимый со стороны удалённого источника, за 12 ч поворачивается на 180°. Если все элементы антенной решётки на этом отрезке следят за источником, то за 12 ч можно синтезировать круглую апертуру в плоскости, перпендикулярной оси вращения Земли, с диаметром, равным длине отрезка. Ширина синтезированной диаграммы в любом направлении обратно пропорциональна проекции апертуры на это направление. Ухудшение разрешающей способности в направлениях, близких к плоскости экватора, устраняется при использовании Т-образной антенной решётки с отрезками, ориентированными в направлениях восток-запад и север-юг (рис.).

Современные системы апертурного синтеза состоят из большого числа полноповоротных антенн и одновременно действующих независимых корреляционных интерферометров, что значительно сокращает время наблюдений. Вращаясь вместе с Землёй, каждый интерферометр измеряет большое число слагаемых ряда (2). Для многоэлементных интерферометров метод апертурного синтеза позволяет синтезировать луч с такой шириной, которая может быть получена с апертурой, имеющей размеры, сравнимые с размерами антенной решётки.

Для более полного извлечения информации из результатов измерений используются априорные сведения о яркости неба. Такая априорная информация позволяет применять системы далеко разнесённых антенн, а также строить карты неба, используя только амплитудные измерения, когда сведения о фазе ненадёжны или отсутствуют.

Первые работы с использованием для апертурного синтеза небольших подвижных антенн были выполнены в Кембридже (Великобритания) в 1954 году. В Сиднее (Австралия) в 1956 году впервые использовалось вращение Земли для синтеза двумерной решётки с помощью линейной. Наиболее известная система апертурного синтеза - антенная решётка VLA (Very Large Array) в штате Нью-Мексико (США), завершена в 1981 году. Она состоит из 27 полноповоротных параболоидов диаметром 25 м каждый, которые могут перемещаться вдоль трёх 21-километровых рельсовых путей, проложенных в виде буквы Y. Угловое разрешение этой системы на длине волны 1,3 см составляет 0,05".

Метод апертурного синтеза используется также в интерферометрах, образованных антеннами, разнесёнными на сотни и тысячи километров (радиоинтерферометры со сверхдлинными базами). Это позволяет синтезировать апертуры, сравнимые с размерами Земли, и получать угловое разрешение порядка 0,001", намного превосходящее достигнутое в оптической астрономии. В перспективе - создание апертур Земля-космос, часть элементов которых будет размещена на космических аппаратах (проект «Радиоастрон», Россия).

Лит.: Kraus J.D. Radio astronomy. 2nd ed. Powell, 1986; Христиансен У., Хёгбом И. Радиотелескопы. М., 1988.

Методы обратного (инверсного) синтезирования апертуры

При использовании единой антенны на передачу

Обеспечивается такое же

разрешение, как и при синтезировании апертуры за счет движения приемопередающей антенны РЛС:

, что обеспечивает угловое разрешение

Методы синтезирования, основанные на использовании перемещения и (или) вращения цели, получили название обратное (инверсное) синтезирование. Характерными примерами использования обратного синтезирования являются:

получение радиолокационных портретов морских целей (кораблей) за счет использования их качки и рыскания по курсу;

распознавания групповых воздушных целей;

оценка ЭПР элементов цели, разрешаемых за счет их вращения на стенде и др.

Рассмотрим траекторный сигнал РЛС при обратном синтезировании апертуры. Фаза и задержка траекторного сигнала как основные источники информации о цели определяются изменением расстояния до элементов цели в процессе синтезирования апертуры. В общем случае расстояние изменяется вследствие перемещения цели относительно РЛС и вращения цели. При этом цель может одновременно вращаться в различных плоскостях с различной угловой скоростью.

Радиальная скорость цели в направлении РЛС.

А доплеровская частота

, без учета начальной фазы

Образуется вследствие радиального перемещения одновременно всех элементов цели относительно РЛС. Обычно производится оценка и компенсация этой частоты в сигнале.

Образуется в результате линейной

относительно центра вращения цели. Разрешение элементов цели по частотной модуляции траекторных сигналов при малом размере синтезирования апертуры невелико. Поэтому разрешение по дальности обеспечивается модуляцией зондирующего сигнала. При этом в алгоритме обработки траекторного сигнала необходимо учитывать изменение как частоты сигнала, так и его задержки

будут связаны следующим условием

(8.59)

А координата

Для методов обратного синтезирования применительно к РЛС землеобзора характерны следующие основные особенности:

цель движется как единый объект, т.е. отдельные элементы цели перемещаются по взаимосвязанным траекториям;

при наблюдении одиночных объектов, например кораблей, размер зоны обзора определяется размером объекта;

разрешение по угловой координате определяется углом поворота цели относительно направления на РЛС за время синтезирования;

угловой размер апертуры обычно не превышает десятка градусов, так как при этом уже достигается разрешение порядка нескольких длин волн;

разрешение по дальности обеспечивается, как и при прямом синтезировании, за счет модуляции зондирующего сигнала;

параметры траекторного сигнала определяются параметрами движения цели (векторами линейной и угловой скоростей), которые в большинстве случаев неизвестны наблюдателю. Это требует адаптивной к параметрам движения цели обработки траекторного сигнала и большого объема априорных сведений о цели.

Полоса доплеровских частот траекторного сигнала и, следовательно, требуемая частота повторения зондирующих импульсов определяются размером цели (зоны обзора) по азимуту:

Образованный одновременным перемещением цели в различных плоскостях, не перпендикулярен направлению наблюдения. Тогда вектор скорости

Масштаб изображения цели по азимуту, как и ранее, определяется угловой скоростью вращения цели

(8.61)

Применение метода обратного синтезирования в РЛС землеобзора. В РЛС землеобзора этот метод используется для получения изображений морских целей (кораблей). Он дает возможность получения высокого разрешения в передней зоне обзора РСА, так как необходимый угловой размер синтезированной апертуры обеспечивается за счет собственного движения (перемещения и вращения) корабля. Кроме того, обратное синтезирование апертуры позволяет получить высокое разрешение не только в плоскости дальность - азимут, но и в плоскости дальность - угол места. Применительно к наблюдению кораблей это позволяет получить изображение вертикального контура надстроек кораблей, что особенно важно при решении задачи распознавания морских целей.

Одновременно с перемещением по курсу при волнении моря корабль испытывает также колебания корпуса вокруг центра масс. Для задач обратного синтезирования обычно используют рыскание по курсу, килевую и бортовую качку корабля. Рыскание по курсу (рис. 8.23,а) соответствуют вращению корабля относительно вертикальной оси. Килевая качка (попеременный дифферент на нос и на корму) соответствует вращению корабля относительно поперечной горизонтальной оси (рис. 8.23,6). Попеременный крен (бортовая качка) на левый и правый борт соответствует вращению корабля относительно продольной горизонтальной оси (рис. 8.23,в). На рис. 8.23 все оси вращения перпендикулярны плоскости рисунка.

Вращение корабля (качка, рыскание) носят периодический характер, т.е. угол отклонения корабля от равновесного (нормального) положения изменяется в соответствии с гармоническим законом:

Период колебаний. Угловая скорость вращения изменяется по гармоническому закону:

Максимальное значение скорости

достигается в момент прохождения равновесного (как при отсутствии волнения моря) положения корабля.

Определяется многими факторами: высотой волн, направлением бега волн относительно курса корабля, скоростью движения и конструкцией корабля. Большой корабль как колебательная система эквивалентен узкополосному фильтру, и параметры его колебаний (амплитуду и период) можно считать постоянными за время синтезирования порядка долей секунд, С уменьшением водоизмещения корабля (менее 1000 т) амплитуда и период отклонения уже зависят от характеристик волнения моря и носят случайный характер. Обычно считают, что угол р является узкополосным нормальным процессом.

В табл. 8.3 даны оценочные значения характеристик колебаний кораблей различного типа при волнении моря 5-6 баллов.

Если линия визирования корабля перпендикулярна оси угловых колебаний (вращения), возможно получение изображения корабля в различных плоскостях. Килевая качка обеспечивает получение изображения вдоль корабля и его надстроек, качка по крену - изображение в боковом направлении корабля и надстроек, рыскание по курсу - изображение корабля в горизонтальной плоскости. Движение корабля с постоянными скоростью и курсом эквивалентно движению РЛС при неподвижном корабле и обеспечивает изображение в горизонтальной плоскости. В реальной ситуации одновременно существуют все виды колебаний корабля, что затрудняет определение положения плоскости изображения относительно корабля. В то же время, наблюдая динамическое изображение корабля, т.е. изображение, изменяющееся в зависимости от фазы колебаний корабля во время синтезирования, можно эффективно распознавать его класс.

Расстояния

от надстройки на высоте Ь до РЛС (рис. 8.24) определяется выражением

где Ь - высота элемента надстройки, отсчитываемая от оси вращения корабля.

(в радианах), изменение расстояние до РЛС и, следовательно, фазы отраженного сигнала можно представить в виде

Через ноль, когда угловая скорость отклонения максимальна (см. 8.64):

Изменяется незначительно и каждому элементу надстройки по высоте соответствует своя доплеровская частота

за время синтезирования

получим разрешение по высоте надстройки корабля

Алгоритм обработки сигналов сводится к доплеровской фильтрации в каждом элементе разрешения по наклонной дальности. Полученные зависимости справедливы и при килевой качке корабля и радиолокационном наблюдении в передней зоне обзора РЛС на встречных курсах самолета - носителя РСА и корабля (рис. 8.25). Разрешение по доплеровской частоте в этом случае соответствует разрешению по высоте надстройки Ь, а разрешение по задержке зондирующего импульса соответствует разрешению вдоль корабля.

При увеличении времени синтезирования начинают сказываться изменения доплеровской частоты и задержки сигнала, что необходимо учитывать в алгоритме обработки. Предельное разрешение без учета изменений задержки и частоты ограничено величиной (8.59)

При постоянном времени синтезирования разрешение будет ухудшаться.

можно получить, измеряя характеристики сигнала в каждом доплеровском канале на выходе моноимпульсной антенны.

Упрощенная структурная схема РСА при обратном синтезировании по морским целям представлена на рис. 8.26. Антенная система формирует три пространственных канала приема: суммарный и два разностных (в горизонтальной и вертикальной плоскостях). После преобразования на промежуточной частоте принимаемые сигналы с помощью фазовых детекторов и АЦП превращаются в цифровые сигналы. Система слежения по частоте определяет среднюю доплеровскую частоту принимаемых сигналов и ее изменение для компенсации в процессе обработки сигналов (автофокусировка), а также измеряет изменение задержки огибающей сигналов для ее компенсации при синтезировании апертуры. Система измерения вектора угловой скорости вращения (колебания) корабля обеспечивает определение масштаба и ориентации в пространстве изображения корабля.

Перемещение цели, так же как и движение носителя РЛС, создает эффект синтезирования апертуры, угловой размер которой определяется взаимным угловым перемещением РЛС и цели. Покажем это на примере разрешения элементов групповой цели (рис, 8.27), состоящей из двух синхронно движущихся малоразмерных объектов (точечных целей).

Доплеровская частота изменяется так, что разница частот сигналов двух целей, движущихся с одинаковой скоростью, составляет

Соответственно тангенциальные составляющие скорости РЛС и целей.

- угловая скорость вращения линии визирования

РЛС - цель.

Алгоритм обработки траекторного сигнала при наблюдении груп новой цели определяется фазовой структурой сигнала, которая в свою очередь зависит от взаимного перемещения (траекторий) РЛС и целей.

При прямолинейных траекториях и постоянных скоростях движения относительное расстояние РЛС - цель (см. рис. 8.27)

Фазовая функция траекторного сигнала (без учета несущественной начальной фазы)

Соответственно доплеровская частота траекторного сигнала

Для цели, смещенной на угол А 6 , доплеровская частота траекторного сигнала

В общем случае неизвестны, требуется

адаптивная к этим параметрам система обработки, например с помощью автофокусировки.

При энергичном маневре самолетов

см время синтезирования может изменяться от 0,5 до 0,05 с. При адаптивной обработке, например автофокусировке, это время может быть значительно увеличено.



error: Content is protected !!