Можно ли разогнать процессор amd athlon. Как разогнать процессор AMD Ryzen: выжимаем максимум из новейших процессоров

Решил написать небольшой FAQ, как разогнать ЦП компьютера, проверить его после разгона на отказоустойчивость.

Мне всегда хотелось разогнать свою "малышку" хотя бы на чуть-чуть, но увы на стареньком Celeron 668 Mhz много не добьешься =) Потом появился AMD Athlon 64 3000+. Тогда и решил попробовать - кулер был хороший для охлаждения.

К сожалению скриншотов тех не осталось, но разогнал я до 2,4 ГГц с 1.8 ГГц. Для меня это был результат. Сейчас же стоит AMD Phenom II x4 960T, но разгоном я пока сильно не занимался, немного разогнал с 3.0 до 3.4 ГГц.

Разгон системы - вполне опасная вещь, если не знать куда лезешь и что нажимаешь. Продавцы не дают гарантию на разгон, В случае, если что-то сломается или выйдет из строя, по гарантии нам никто ничего не обменяет. Разгон - дело выбора. Все манипуляции с компьютером проводимые Вами не входят в условия гарантии! Вы делаете это на свой страхи риск!

Ну что же, хватит предысторий, начнем!

Я буду приводить инструкции на своей конфигурации компьютера, надписи могут отличаться, но суть одна.

Часть 1. Подготовка|Выбор комплектующих

Уровень успеха разгона очень сильно зависит от комплектующих системы. Для начала потребуется процессор с хорошим потенциалом разгона, способный работать на более высоких частотах, чем штатно указывает производитель. Для разгона процессора важно, чтобы другие компоненты тоже были подобраны с учётом этой задачи. Довольно критичен выбор материнской платы с BIOS, дружественным к разгону.
Температура и прочие характеристики
Перво-наперво нужно знать максимально рабочею температуру процессора - максимально допустимая у меня ≈ 80-90 °C.
- необходимо знать множитель процессора;

Материнская плата и ОЗУ
При разгоне необходима хорошая материнская плата и память.

Материнская плата должна обеспечивать достаточно большой набор функций в BIOS, включая поддержку Advanced Clock Calibration (ACC), а также прекрасно работать с утилитой AMD OverDrive, что важно для выжимания максимума из процессоров Phenom.

Подбор правильной памяти тоже важен, если вы хотите достичь максимальной производительности после разгона. При возможности устанавливайте высокопроизводительную память, в зависимости от вашей материнской платы.
У меня - ASUS M4A87TD-EVO | Kingston DDR3 2x1024mb

Охлаждение ЦП:
Прежде чем задуматься о разгоне - вы должны понимать, что разгон дело не простое и "горячие". Что бы не испортить систему необходимо хорошее охлаждение, которое стоит не то что больших, но все таки денег.
Так же, лучше открыть крышку корпуса, что бы обеспечить отток горячего воздуха (у многих стоит не один и не два кулера в системе, но лишний отток все равно не помешает)

Термопаста - специальный слой теплопроводящего состава между охлаждаемой поверхностью и отводящим тепло устройством.

Я менял ее один раз, потому что процессор стал плохо отдавать тепло и сильно греться (AMD Athlon 64 3000+).
Сильно дорогую я не покупал. Купил пасту "Титан", аккуратно нанес ее на процессор и прикрепил радиатор (об этом я расскажу в следующем сообщении).

Термопаста очень важна! Чем лучше она качеством, тем лучше она будет проводить тепло к радиатору и следовательно тем меньше будет температура ЦП.

Но можно сделать небольшой разгон и на боксовом кулере, но не ждите много - увеличение частоты на 30-60 Мгц, это уже разгон.
- Если у Вас установлен боксовый кулер, то в разгоне мы не много ограничены - охлаждения может не хватить на многое.

Блок питания (БП)
БП Должен быть стабильным, обеспечивающий стабильные уровни напряжений и достаточный ток, чтобы справиться с повышенными требованиями разогнанного компьютера. Слабый или устаревший блок питания, загруженный "под завязку" может испортить все наши старания.
У меня - OCZ 500W

Как рассчитать..?
Тактовая частота CPU = базовая частота * множитель CPU;
частота северного моста = базовая частота * множитель северного моста;
частота канала HyperTransport = базовая частота * множитель HyperTransport;
частота памяти = базовая частота * множитель памяти.

По этой части вроде все.

Что такое разгон?

Разумеется, бездумно жать кнопки - это не правильно. Нужно знать к чему приведут все эти нажатия. Прежде чем нажимать, нужно понимать для чего ты нажимаешь, и что после этого будет. Опасность разгона сильно преувеличена - но не ничего не возможного! Есть вполне реальная вероятность вывести компьютер из работоспособного состояния. Попросту - детали перегреются и начнут плавиться.. И никто по гарантии нам их не поменяет! Я думаю, что этот блог читают умные люди,и следовательно будем считать я Вас предупредил!

Разгон или оверклокинг (от англ. overclocking) - повышение быстродействия компонентов компьютера за счёт эксплуатации их в форсированных (нештатных) режимах работы.

Разгон сводиться к повышению тактовой частоты процессора.

Выбор: как разгонять?

В настоящее время компьютер можно разогнать посредством программ, работающих из под системы.
Например Clockgen
http://www.overclockers.ru/images/soft/2003/11/27/ClockGen_nf2.gif

Так же есть специальные программы для матерински плат, на примере ASUS TurboV EVO
http://www.smotherboards.ru/wp-content/gallery/0910312119/18.jpg

Так же можно разгонять систему из BIOS, оперируя настройками оттуда.

BIOS

BIOS - basic input/output system - базовая система ввода-вывода.
BIOS многолик - есть Phoenix, AMI прочие версии. Но суть одна - по названиям можно догадаться что за функция.
К сожалению я не смогу предоставить своих фотографий, так как нету камеры.а на телефон фоткать - слишком убого получается.. Извиняюсь что нет своих фотографий, но то что я нашел в хламе друзей не сильно отличается от моего, да и вообще от всех M/b.

Представленная мне плата - ASUS M3A78-T

Во-первых, плата ASUS M3A78-T позволяет изменять частоту HTT в диапазоне от 200 МГц до 600 МГц с шагом в 1 МГц. Во-вторых, пользователь может поменять множитель шины HT (HyperTransport):
http://www.3dnews.ru/_imgdata/img/2009/04/09/asus/bios_select_htclock.jpg
В-третьих, можно изменить множитель контроллера памяти:
http://www.3dnews.ru/_imgdata/img/2009/04/09/asus/bios_select_nbmulti.jpg

Для того что бы разогнать ЦП необходимо увеличивать частоту Шины процессора. Если не стартует после этого - увеличиваем напряжение на процессор.
Все это делается в меню Advanced
CPU Frequency - собственно частота. дефолотное значение на всех компьютерах, с которыми я работал - 200
Processor Frequency Multiplier - множитель. может стоять - Auto, x4, x15.
Processor Voltage - Вольтаж процессора обычно стоит на Auto или 1.4
Processor-NB Frequency Multiplier - множитель контроллера памяти.

Пользователям современных плат (например все та же ASUS M4A87TD EVO) можно просто нажать кнопочку и система сама подберет оптимальные настройки разгона:)

ИТОГИ: Проверяем стабильность

Ну вот, мы разогнали процессор, теперь нужно проверить его на стабильность (отказоустойчивость). Это позволит понять нам, справляется ли ЦП с возложенной на него нагрузкой. Во время теста - если "все так плохо", компьюер может перезагрузиться, уйти в BSOD или попросту зависнуть. Это значит, что компьютер после разгона будет сбоить. Возвращаемся в BIOS и понижаем частоту и вольтаж процессора. запускаем, проверяем - если все нормально оставляем. Если нет то опять в БИОС и проделываем тот же фокус с частотой шинымножителемвольтажем процессора.

Мониторить температуру во время теста обязательно!
Для этого необходимы программы:
Мониторинг данных датчиков:
FanExpert, CPU-Z, AIDA64Everest, AMD Over Drive.
Для тестирования системы необходимы:
LinX, S&M, AMD OverDirve.

Запускаем тесты, смотрим температуру.

Собственно все:) Прошу строго не судить, сильно и жестоко не критиковать.
Удачи!

Время от времени мы проводим проверку оверклокерского потенциала процессоров, продающихся в обычных розничных магазинах. Дело это не очень интересное, даже несколько нудное, но нужное, поскольку надо "держать руку на пульсе" и своевременно отслеживать изменение текущей ситуации с разгоном. Есть два достаточно распространённых и отчасти взаимосвязанных мнения:

  1. Процессоры нам предоставляют производители, специально отбирая хорошо разгоняющиеся экземпляры, чтобы с нашей помощью заставить доверчивых пользователей покупать "обычные" процессоры, которые гонятся плохо.
  2. Лучше покупать боксовые процессоры – больше шансов, что попадётся хорошо разгоняемый экземпляр. Из oem-процессоров хорошо гонящиеся отбирают продавцы для себя и для друзей, а простому покупателю "с улицы" достаются неразгоняемые остатки.

Действительно, иногда производители предоставляют нам процессоры, они необходимы для тестов материнских плат. Для проверки плат очень желательно, даже необходимо, чтобы процессор хорошо разгонялся и был заранее известен предел его разгона. Важно, чтобы подольше использовался один и тот же экземпляр для корректного сравнения возможностей разных плат. Не думаю, что процессоры для нас специально отбирают. Что касается такой проверки, как сегодня, то производители совершенно не при чём, поскольку процессоры берутся наугад из розницы.

По поводу боксовых и oem-процессоров ответить сложнее. Действительно, если магазин маленький, в наличии имеется всего несколько процессоров, а покупателей немного, то почему бы в свободное время не отобрать себе самый лучший? Вполне вероятно, что некоторые продавцы так и поступают. Однако посмотрите на работу крупного магазина и вы поймёте, что физически невозможно протестировать сотни и тысячи продающихся процессоров. Мало того, в хорошем магазине у продавцов и работников склада на это просто нет времени.

Так что oem-процессоров можно не бояться, однако их нужно покупать в "правильных" (читай – больших, с крупным оборотом) магазинах и не стоит забывать, что разгон – это во многом лотерея, процессор может попасться хороший, а может и не очень. Посмотрим, что за процессоры достались нам на этот раз.

Три процессора AMD Athlon 64 3000+ выпущены на 37-ой неделе этого года, о чём говорит вторая строка маркировки LBBWE 0537VPBW . Утилита CPU-Z распознаёт, что они основаны на ядре Venice, однако не сообщает ревизию ядра. От этого недостатка свободна утилита OverSoft CPU Informer версии 0.95. Программа справедливо утверждает, что ревизия ядра E6, однако она не может показать текущее напряжение процессора – нет в мире совершенства.

Впрочем, о принадлежности к ревизии E6 можно сразу понять по первой строке маркировки процессоров – ADA3000DAA4BW . Если же внести эту строку в поле поиска сайта AMD Quick Reference Guide , то мы получим и остальные характеристики процессоров.

Состав открытого тестового стенда для проверки выглядел следующим образом:

  • Материнская плата – Abit Fatal1ty AN8 SLI, rev. 1.0
  • Видеокарта – NVIDIA GeForce 6800GT (16p/6v, 350/1000 MHz)
  • Память – 2x512 MB Corsair CMX512-4400C25
  • Жёсткий диск – Western Digital Raptor WD740GD
  • Кулер – Scythe Ninja (120mm fan, ~1600RPM)
  • Термопаста – Zalman
  • Блок питания – SilverStone Zeus ST65ZF (650W)
  • Операционная система – WinXP SP2.

Кулер Scythe Ninja был выбран только потому, что его крепление уже было установлено на материнской плате. Впрочем, это вообще очень хороший кулер. Если по поводу Zalman CNPS9500 LED или Thermaltake Big Typhoon мнения разделялись, то о Scythe Ninja ещё никто плохо не отзывался. Однако это достаточно габаритный кулер, чтобы удобнее было менять процессоры, я переставил память в два дальних от сокета слота и, прежде чем начать тесты, решил проверить, достаточно ли стабильно работает система.

Предварительная проверка проходила с нашим штатным процессором AMD Athlon 64 3800+ (предоставленным для тестов компанией AMD) и никаких изменений к худшему в его разгоне замечено не было. Он по-прежнему работал на частоте 2.8 ГГц (280*10) при увеличении напряжения на 0.1 В. Однако того же нельзя сказать о памяти, в двух дальних слотах она отказывалась работать "синхронно", на той же частоте 280 МГц. В данном случае это для нас не критично и я уже установил первый процессор AMD Athlon 64 3000+, но решил проверить, а не появилось ли на сайте Abit новых прошивок для платы?

Мы использовали плату с версией BIOS 1.6, между тем уже имелась версия 1.8, где в числе прочих изменений числилась улучшенная совместимость с различными модулями памяти. Естественно, что я немедленно обновил прошивку, однако очень расстроился, увидев результаты. Вы не поверите, я даже забыл протестировать стабильность работы памяти в "дальних" слотах, хотя именно это было причиной обновления BIOS. Всё дело в том, что в предыдущей прошивке версии 1.7 были скорректированы показания температуры процессора. По всей видимости, эта коррекция благополучно перекочевала и в новую версию, иначе как объяснить, что теперь стартовая температура процессора AMD Athlon 64 3000+ составляла всего 20°C (при 22 комнатных). Я и раньше знал, что тепловыделение процессоров AMD невелико, теперь, благодаря Abit, знаю, что они даже могут работать как холодильники.

В общем, махнув рукой на нереально низкие температуры, уменьшив частоту работы памяти и шины HyperTransport, я приступил к проверке процессоров AMD Athlon 64 3000+, по обыкновению расположив их в порядке возрастания серийных номеров. Первый и третий процессоры продемонстрировали одинаковые результаты – без повышения напряжения они способны были стартовать и загрузить операционную систему на частоте тактового генератора 280 МГц (280*9=2520 МГц), однако увеличение частоты всего на 5 МГц подкашивало все их 939 ножек.

Второй же процессор не только твёрдо стоял на ногах на частоте 285 МГц (он даже проходил тест 1M SuperPi), но и грузил Windows на частоте 290 МГц (правда, при тестах система выкидывала BSOD). Именно с ним и были проведены дальнейшие тесты, которые показали, что с увеличением напряжения до 1.575 В (на 0.175 В) он стабильно работает на частоте 2.7 ГГц. Это подтвердила проверка в программе S&M v1.7.5 (beta) при 100%-ной загрузке в режиме "норма".

Можно добавить, что его температура при этом поднялась до 50.1°C, однако в свете коррекции показаний в BIOS эти цифры не имеют особого значения.

В нашей статистике разгона процессоров можно найти немало интересного. Например, число процессоров AMD Athlon 64 на ядре Venice приближается к четырёмстам, причём более трёхсот из них – младшие 3000+. Это вполне логично – зачем брать старшие, более дорогие, если и младшие неплохо разгоняются. Не будем обращать внимание на разгон выше 3 ГГц – может действительно у всех стоят "фреонки" или на морозе удалось всего лишь снять скриншот. Имеются результаты разгона в 2.8 и в 2.9 ГГц, однако самый распространённый – 2.7 ГГц. 300*9=2700 – такие результаты встречаются так же часто, как раньше 2.2 ГГц для процессоров Athlon XP (200*11=2200). 2.7 ГГц – это почти стандарт разгона с воздушным охлаждением процессоров на ядре Venice, но вся проблема в слове "почти"...

Если посмотреть статистику внимательнее, то выяснится, что немало процессоров разгоняются всего лишь до 2.4-2.6 ГГц, а ведь такие частоты покорялись процессорам на ядрах Winchester и даже Newcastle. Можно, конечно, всё списать на слабое охлаждение боксовыми кулерами, на плохие блоки питания, неудачные материнские платы и неопытность оверклокеров. Наверняка доля правды в этом есть, однако около месяца назад я проверял такой же процессор AMD Athlon 64 3000+ (Venice, E6), как сейчас. Первая строка маркировки была точно такой же: ADA3000DAA4BW , вот только выпущен он был чуть раньше, вторая строка: LBBWE 0532APDW . Этот процессор удалось запустить на частоте 290 МГц и он даже прошёл проверку S&M, однако напряжение при этом пришлось повысить до 1.7 В! Согласитесь, что повышение вольтажа на 0.3 В от номинала – это многовато для долгой стабильной работы, а 300 МГц вообще остались недосягаемы. Зато с небольшим увеличением напряжения процессор замечательно работал на частоте 270 МГц, что как раз и составляет чуть больше 2.4 ГГц.

Другой пример – недавний обзор процессоров AMD Sempron 3000+ Socket 939. И материнская плата была "правильная", и кулер хороший, и оверклокер опытный, но повышение напряжения помогло мало, а результат тот же – 2.4 ГГц.

К чему я всё это говорю? У процессоров AMD есть немало достоинств, однако в их число не входит обязательный разгон до 2.7 ГГц. Покупая процессор на ядре Venice любой ревизии, будьте морально готовы к тому, что предел его разгона окажется в районе 2.4 ГГц. Обидно, конечно, что не 2.7, но зато это настоящие полноценные мегагерцы, 2.4 – это тоже очень неплохо для процессоров AMD K8.

Конечно же, инженеры AMD не могли позволить себе такую роскошь, как убрать защиту от разгона. Новый Athlon XP/MP на ядре Palomino - прекрасный пример высококачественной работы, на какую только способен производитель чипов. Если вы теперь пожелаете соединить мостики L1 обычным карандашом, это уже не поможет. Как мы помним, такой способ был весьма действенен на прошлых Athlon с ядром Thunderbird. Таким образом, рассеялись мечты крутых "разгонщиков", которые еще до покупки процессора строили планы насчет разгона.

Что же изменилось с приходом Palomino? Кроме добавления новых мостиков L, на процессоре с помощью лазера были выжжены ямки. Ямки затрудняют соединение контактов (при помощи, скажем, того же карандаша) для снятия защиты. С технической же точки зрения защита у старого Athlon и новых Athlon XP/MP не изменилась.

И хотя мы обнаружили несколько технических особенностей во время тестирования, все что вам нужно сделать для разгона - соединить контакты L1. Это разблокирует множитель, заданный на заводе с помощью мостиков L3 и L4.

После того, как мы соединили контакты L1, AMD Athlon 1900+ без проблем работал на 1666 МГц (2000+).

После многочисленных проб и ошибок, учитывая советы наших читателей, в итоге у нас получилось ясное пошаговое руководство, которое поможет пользователям снять защиту множителя на Athlon XP. И это не все. Кроме этого мы добавили тестирование "нового" процессора, чтобы вы могли оценить прирост производительности.

Время, которое потребуется на снятие множителя - около 30 минут. После этого вы сможете разогнать процессор, изменяя его множитель. Мы не учитываем разгон с помощью увеличения частоты FSB, потому что это приводит к росту частот шин AGP и PCI, что не лучшим образом сказывается на стабильности.

Загрузочный экран с разогнанным Athlon XP:
BIOS опознала его как Athlon XP 2000+,
хотя мы не увидим этот процессор еще 6 недель или около того.


Пошаговая инструкция

Перед началом всей операции убедитесь, что ваша материнская плата может изменять множитель либо в BIOS, либо через переключатели на плате (последний вариант наиболее часто встречается на Socket A материнских платах с чипсетами VIA KT133A, VIA KT266A, SiS 735). В нашем тестировании по соединению контактов L1 мы использовали несколько процессоров Athlon XP. Из материнских плат была выбрана Epox EP-8KHA+, которая позволяет управлять множителем через BIOS.

Для соединения контактов L вам понадобятся следующие инструменты:

  • Проводящий цапоновый лак, которым мы собственно и соединяли контакты
  • Скотч для изоляции и разделения
  • Суперклей (или что-то подобное) для заполнения выжженных ямок
  • Скальпель для удаления остатков клея (на Tom"s Hardware использовали нож для бумаги)
  • Авометр/мультиметр для измерения сопротивления


Внешний вид Athlon XP 1900+.
Стрелка указывает на контакты L1, с которыми и будет производиться операция.


Почему не работает соединение карандашом?

В отличие от обычного Athlon (керамическая подложка с ядром Thunderbird), на котором контакты L1 легко соединялись с помощью обычного карандаша, в Palomino AMD встроила более хитрую защиту. Если на старом Athlon Thunderbird сопротивление между землей и нижним рядом контактов L1 приближалось к бесконечности, то на новом Athlon XP (ядро Palomino, органическая упаковка) сопротивление оказалось равным 945 Ом (около 1 кОм).

По этой причине карандаш и не будет работать: если соединить L1 контакты карандашом, сопротивление графита будет слишком высоким. Соответственно ток по мостикам не пойдет, и контакты окажутся разомкнутыми. Другими словами, AMD и с этой стороны постаралась усложнить жизнь разгонщикам. Единственный выход из такой ситуации - использовать вещество с минимальным сопротивлением, например, проводящий цапоновый лак, который можно купить в магазине радиотоваров.

Сопротивление между землей и контактами L1 было снижено до примерно 1 кОм - карандаш уже не работает.

Старый Athlon Thunderbird: мы измерили сопротивление графитового мостика, выполненного с помощью карандаша. Как видите, оно выше 1 кОм, однако в этом случае все будет работать.

Еще одно измерение показало, что символы "L1", "L2" и треугольник (обведены синим) заземлены. Следует избегать случайного протекания лака до этих точек, иначе все ваши усилия пойдут насмарку.


Вот и наш секрет - закрываем контакты

Перед упражнениями с лаком следует заполнить выжженные лазером ямки. Если цапоновый лак протечет в эти ямки, вы опять же столкнетесь с проблемой ненужного заземления. Невооруженным взглядом трудно заметить заземленную медную пластинку, замыкающую ямку снизу.

Во-первых, следует закрыть контакты L1 (верхний и нижний ряды) кусочком скотча или чем-нибудь подобным. Это позволит отделить ямки от контактов для следующего этапа - заполнение ямок суперклеем.


Внешний вид контактов L1 на Athlon XP 1900+


То же самое при сильном увеличении

Будьте аккуратны. Внимательно проверьте соединение ленты и подложки по всей длине, чтобы клей не проник, куда не следует.


Используем суперклей - изолируем ямки

Как только контакты были полностью изолированы скотчем, можно применять суперклей. Внимательно следите за количеством клея, чтобы лишь небольшая часть выдавилась на процессор.

Добавляем суперклей на открытый участок между контактами L1

Увеличенное изображение ямок, заполненных клеем


Удаляем скотч и остатки клея

Подождите 10 минут для полного высыхания клея. Далее аккуратно снимите скотч и используйте скальпель для аккуратного удаления остатков клея.

Удаление остатков клея между контактами L1 с помощью ножа для бумаги


Второй раз закрываем контакты - применяем проводящий цапоновый лак для создания мостиков L1

Теперь настало время соединить контакты L1 (попарно верхний с нижним), используя проводящий цапоновый лак. Вам опять же придется закрывать часть контактов скотчем, иначе лак может попасть на ненужные места. Во-первых, прикрепите скотч по обеим сторонам будущего L1 мостика (на картинке ниже - сверху-вниз). Во-вторых, закройте все лишнее кроме мостика, наложив полоски скотча в горизонтальном направлении (на рисунке ниже - слева-направо). Учитывая несколько неудачных попыток (включая сломанные процессоры), мы настоятельно рекомендуем следовать нашим инструкциям.

Каждый мостик "наводится" индивидуально, чтобы удостовериться в точном нанесении цапонового лака. На картинке вы можете заметить, как точно следует окружать контакт скотчем. Иначе вы не сможете правильно соединить контакты. После закрывания лишних мест, нанесите лак с помощью маленькой кисточки.

Проводящий цапоновый лак, который можно купить в магазине радиотоваров.


Нанесение лака на самодельное "окно" в пленке.
Фактически окно будет полностью заполнено лаком.


Увеличенное изображение первого мостика, наведенного с помощью лака

Сейчас вам следует убрать пленку, и вы получите достаточно хорошее соединение. Выполняйте аналогичную процедуру для каждой оставшейся пары контактов, до тех пор, пока все мостики L1 не будут замкнуты. Далее измерьте сопротивление получившихся мостиков (от нижнего контакта к верхнему). Сопротивление должно приближаться к 0 Ом! Проверьте еще раз, не произошло ли случайного соединения соседних мостиков между собой. Если вы обнаружите такое соединение, его следует аккуратно разомкнуть, используя скальпель. При измерении сопротивления не давите сильно на щуп, иначе вы можете сколупнуть лак.

Мостики, конечно же, можно снять. Для этого вам понадобится твердый ластик. Потом вы можете проделать процедуру наведения мостиков еще раз.


Проба Athlon XP 1900+, разогнанного до 2000+

Итак, контакты соединены должным образом (для лучшей сохранности вы можете заклеить контакты скотчем). Настало время поместить процессор на материнскую плату, в нашем случае на Epox EP-8KHA+ с чипсетом VIA KT266A. На следующей иллюстрации видно, что множитель можно спокойно изменять.


Множитель теперь можно спокойно изменять из BIOS

В BIOS не доступен множитель 12,5X - в качестве такового процессор интерпретирует 13X. Полагаем, специалисты из Epox исправят эту ситуацию в будущем.


Изменяем напряжение на ядре в BIOS для разгона

Как видите, для успешного разгона Athlon XP 1900+ до 2000+ нам пришлось поднять напряжение на ядре до 1,85 В.


Картинка с новой тактовой частотой и множителем под Windows 98. После того, как BIOS покажет частоту Athlon XP, равную 1666 МГц (Athlon XP 2000+), вы можете загружать операционную систему (в нашем случае Windows 98SE). Как видим, популярное в народе средство WCPUID показывает следующие данные: частота ядра 1666 МГц, множитель 12,5X, частота FSB 133 МГц. Разгон удался.


Ситуация не изменилась и под Windows XP


Установки множителя и напряжения

Для самых любознательных мы приготовили две таблицы зависимости значений множителя и напряжения от замыкания соответствующих мостиков.


Расшифровка значений мостиков для изменения множителя

Если ваша материнская плата поддерживает разгон (например, позволяет выставлять множитель в BIOS), то замыкание L1 мостиков для вас будет самым удобным решением. Выше мы досконально описали этот процесс. Изначально же процессор поставляется с разомкнутыми мостиками L1. При этом множитель выставляется мостиками L3 и L4. Но если вы захотите изменять эти мостики, вы не сможете вернуть все как было. Поэтому мы и не приводим инструкции для работы с мостиками L3 и L4.


Расшифровка значений мостиков L11
для регулировки напряжения на ядре

Материнские платы, поддерживающие разгон, обычно позволяют вручную изменять напряжение на ядре. Если же ваша материнская плата осуществляет только автоматическое выставление напряжения, вам придется найти способ увеличить напряжение для нормального разгона.


Ошибки

Перед тем, как найти лучший метод "наведения" мостиков, нам пришлось пройти путем проб и ошибок. Самой большой проблемой было создание окна для отдельного мостика. Первоначально мы использовали бумагу, которая плохо уживается с цапоновым лаком. К тому же при этом нет гарантии, что бумага плотно прилегает к подложке. Если вы капнете лаком в окно из бумаги, то лак легко пройдет за бумагу, размажется по поверхности и вся ваша работа летит коту под хвост.


Ошибочная попытка создания окна для мостика L1, используя бумагу


Увеличенная картинка ясно показывает неаккуратное соединение мостиков

Соединение карандашом с Athlon XP больше не работает. Рядом показано увеличенное изображение мостиков. Но сопротивление таких мостиков слишком велико, поэтому такое соединение не действует. Как мы уже говорили, сопротивление мостика превышает 1 кОм, и по нему не идет ток. На старом же Athlon Thunderbird сопротивление между нижними контактами L1 и землей было близко к бесконечности, поэтому ток все же проходил по графитовым мостикам.

Если же вы при нанесении клея досконально не проверите прилегание скотча к подложке, вы можете столкнуться со следующей ситуацией.

На этой иллюстрации слой клея простирается далеко за ямки,
даже частично закрывая контакты

Ситуацию пришлось выправлять таким вот образом

Если разгон, да еще и – процессора, значит, снова начнется: CPU-Z, Prime-95 и Линпак… И это – программы, собственно в «разгоне» никак не участвующие. Но, на самом деле – с AMD оказалось несколько проще. Значительно проще.

Канадской компанией AMD, то есть, самой фирмой, выпускается одна такая программка. Она – абсолютно бесплатна. Из нее – можно разгонять процессор AMD (начиная с AM-2 сокета), на любой «материнской» плате, не зависимо от производителя… Менять все значения, тестировать корректность разгона, смотреть реальные значения частот, тестировать производительность. То есть, одна программка (с одним окном из нескольких вкладок) – заменит собой типичный «набор» утилит. Но всем желающим, никто не запрещает тестировать «стабильность» Prime-ом, равно как и оценивать производительность после разгона Линпаком. Еще раз повторим – программа свободно работает на всех системных платах (с сокетом от АМ2 и выше, и чипсетом AMD от 7xx). Называется она – тоже, просто: AMD OverDrive.

Предупреждение

Любое изменение значений тактовых частот, выходящее за пределы установленных в документации (равно как завышение питающих напряжений) – нарушает лицензионное соглашение и лишает конечной гарантии. После «разгона», любое устройство автоматически теряет гарантию. Все действия вы будете проводить на свой риск.

Теперь – о менее грустном

Программа позволяет «менять» практически все, что можно менять: частоту Гипертарнспорта, шин PCI-e и PCI, даже (внимание!) – тайминги памяти. Ну, и напряжения (и все это – с отслеживанием температуры в постоянном режиме). Многоядерный процессор amd, можно разгонять отдельно по каждому ядру… Словом, имея установленную «AMD OverDrive», в BIOS лезть – как бы и незачем.

Официальные требования

Поддерживаются чипсеты: AMD Hudson-D3, 990X, 990FX, 970, 890GX, 890FX, 890G, 790FX, 790GX, 790X, 785G, 780G, 770.

В списке нет чипсета вашей системной платы? Скорее всего, он действительно не поддерживается (в том числе, касается это 760G, 740G, 780V).

Скачивается программа здесь:

http://download.amd.com/Desktop/aod_setup_4.2.3.exe. На момент написания обзора, версия была 4.2.3 (что и рассмотрено далее).

Подготовительные действия

Куда должен идти человек перед тем, как пойдет в первый класс? Правильно, в подготовительный. Так и здесь:

  1. Драйвер Cool-n-Quiet, если был установлен – оставьте: это AMD Processor Driver for Windows, пусть он останется.
  2. Зайдите в BIOS и выключите принудительно:
  • Cool ‘n’ Quiet (в Disable);
  • C1E (в Disable);
  • Spread Spectrum (в Disable);
  • Smart CPU Fan Control (в Disable).

При выходе из BIOS, обязательно сохраните изменения. Загрузите ОС.

Примечание: другое название для C1E – Enhanced Halt State. Привести подробное руководство здесь – невозможно, т.к. у всех материнские платы – разные (если не знаем, что где – читаем инструкцию-книжечку по настройке данного BIOS).

Собственно, система теперь готова к установке и запуску «Over Drive». Но сначала – еще пара слов.

Можно ли разгонять процессор в данной системе?

Посмотрите на график энергопотребления. Он касается как раз разгона (то есть, потребление – до и после этого действия):

Это – мощность, потребляемая только процессором (в Ваттах). Сразу, появляется пара вопросов: «потянет» ли ваш блок питания? А кулер процессора? У AMD, как правило, все боксовые кулеры рассчитаны на работу в «штатных» режимах (то есть, и без разгона кулер – почти на пределе). Если вы можете ответить утвердительно на оба вопроса – переходите к следующему этапу.

Примечание: 248 Ватт здесь приходится на 12-Вольтовую линию (то есть, ток по ней равен 20,7 Ампер, при этом, не много БП могут «похвастаться» значением выше, чем 20).

Работа с программой Over Drive

Для начала – краткий ликбез.

  • Частота процессора – это частота ядра CPU, на которой процессор выполняет инструкции.
  • Частота HyperTransport-а: частота интерфейса между процессором и северным мостом. Обычно – равняется частоте северного моста (но – не должна ее превышать).
  • Частота северного моста (NB): для процессоров, увеличение частоты северного моста приводит к повышению скорости контроллера памяти (и кэша L3). Данная частота должна быть не ниже, чем частота HyperTransport-а, хотя можно сделать ее и значительно выше.
  • Частота памяти: рабочая частота (в мегагерцах), на которой функционирует память. Нужно помнить, что физическая частота – в 2 раза меньше «эффективной».
  • Наконец, базовая частота: как можно видеть, все частоты – высчитываются из базовой (ее умножением или делением).
  • Тактовая частота CPU = множитель CPU * базовая;
  • Частота северного моста (она же, частота L3 в AMD) = множитель северного моста * базовая;
  • Частота HyperTransport-а = множитель HyperTransport * базовая;
  • Частота памяти = множитель памяти * базовая.

Запускаем программу Over Drive. В первом окне – жмем сразу «ОК»:

Тем самым, пользователь согласился с ответственностью (связанной с нежелательными последствиями «разгона»). Основное окно программы – появится вслед за этим:

Как видим, показаны все частоты, установленные в компьютере на данный момент (частота HyperTransport – в правой колонке, а HT ref. – вроде как, «базовая»).

Зачем так много «множителей»? Не проще ли разогнать компьютер сразу базовой частотой?

Дело в том, что с «базовой», связаны еще две – это частоты шин компьютера, PCI и PCI-Express. При росте же частоты PCI, многие устройства, встроенные в плату, могут работать нестабильно (и это наблюдается уже с добавлением менее, чем 10%, к «штатным» значениям).

Эта программа для разгона процессора amd позволяет отслеживать и температуры (всего, чего только можно). Переходим на вкладочку «Status Monitor» (вторая по счету):

Здесь мы видим температуры только ядер процессора (в последней строке). Выбирая же «Board Status» и «GPU status», аналогичный «экран» получим для материнской платы и видео. Дело в том, что последняя версия – поддерживает разгон видео-ускорителя, встроенного в процессор (а в предыдущих – только в чипсет, и еще Side Port). То есть, контролировать надо и температуру видео… Но мы – разгоняем процессор.

Переходим на вкладку «Performance Control» (третья вверху).

Это и есть – основное окно для разгона. Но сейчас вкладка – в режиме «для новичков». Идем на последнюю («Preference»):

Здесь (закладка «Settings») – вместо «Novice Mode» выбираем, как на рисунке («Advanced Mode»). Если вернуться на предыдущую вкладку, вид ее станет таким:

Ну вот, наконец-то! Можно свободно менять все частоты (то есть, все множители), включая даже «базовую» частоту (обозначена, как «HT ref.»):

Примечание: как видим, множитель северного моста (NB) – отсутствует. Частота же NB, на самом деле, возрастает «автоматически», с изменением частоты HyperTransport (она – не может быть меньше, не так ли?).

Как видим, запас по разгону HyperTransport-а (следовательно, NB, и самое главное – L3 кэша) – весьма небольшой. Базовую же частоту «задирать» на очень большие значения – тоже нельзя (даже при 220МГц, может что-то «зависнуть», в том числе: звуковая, сетевая…). Так что, первым делом, обычно «балуются» с множителем (Core Multiplier) процессора.

Активировать изменения – можно кнопкой «Apply»:

После чего, лучше проверить, не привел ли разгон к нестабильности (закладка «Stability Test»). Ну а, реальную производительность – можно оценивать в «Benchmark»).

Технология разгона процессора

  1. Повышаем множитель процессора (пусть это будет +1 или 2). Было 15 – стало 17. Жмем на «Apply».
  2. Включаем «Stability Test». Если он проходится – бежим на вкладку «Status Monitor» (записываем температуру).

Если вас все устраивает (если процессор прогрелся не выше, чем до 70-75 Градусов), частоту можно повысить еще. То есть, повторяется шаг 1. и 2., но только до появления «нежелательных» значений температуры (либо, «провала» «Stability Test»).

Таким образом, мы разогнали процессор одним только множителем.

Здесь, также – «Stability Test» после каждого изменения. Предел – когда начнет нарушаться работа одного из устройств (интегрированных в системную плату). Смысл же в том, чтобы достичь максимально возможной частоты CPU с заниженным множителем (постепенным повышением «базовой»).

В общем, разгон по «базовой частоте» – требует определенной квалификации.

Ну а в последнюю очередь (третий этап, так сказать) – можно «повысить» и множитель «HT Multiplier». Что повлечет разгон L3-кэша (и еще больший нагрев CPU). Закончив разгон, проведите «Stability Test». Всегда (при смене чего-то, в том числе и отличного от CPU-множителя) – смотрите температуры (не только процессора, но и мат. платы), приводимые на вкладке «Status Monitor».

После «разгона», саму программу можно закрыть. Все установки – останутся (чтобы их «снизить» – запустите программу еще раз). Перезагружать компьютер не нужно (и, даже после перезагрузки – изменения останутся в силе).

Дополнительно

Мы «разогнали» только процессор. Слабым звеном в системе останется память. Ее разогнать – тоже можно, для этого служит закладка «Memory»:

Но это – сложнее, чем разгонять CPU, так как «стабильный» разгон ОЗУ связан с подбором таймингов (задержек при переключении). Конечно, сразу их можно повысить на пару значений, но затем – все равно, лучше тщательно подобрать.

Название горит «красным» – значение вступает в силу лишь после перезагрузки. «Частота памяти» переводится на английский, как «Memory Clock».

Примечание: для памяти класса DDR-3 (и 2), физическая частота (отображаемая программой) – относится с «эффективной», как один к двум.

Может быть, это странно, но напряжение памяти – регулируют там же, где и все остальные (в закладке «Clock/Voltage»). Их значения – повышают, если по-другому – не получается. Да и вообще, разгон изменением напряжений – рекомендуется «в последнюю очередь».

Разогнав систему, не ленитесь запускать «Stability Test». На очень больших значениях множителей (более, чем +20% к «штатным» значениям), температуру смотреть лучше сразу, после нажатия кнопки «Apply» (непрерывно, минут 8-10). При наличии перегрева, сразу меняйте значение на «предыдущее».

Нам нужен грамотный, то есть «стабильный» разгон, и мы не хотим «отключения по перегреву». Не так ли?

Ну а на сколько можно «разогнать» определенный процессор? Во-первых, все «не Black Edition»–процессоры, не позволят вам менять множитель (Core Multiplier). Значит, и разогнать Core (ядро) – можно только чуть-чуть, то есть, «базовой» частотой. И больше – никак, по идее. Зато, именно этот «разгон» повышает производительность системы «в целом», в пропорциональное число раз.

Если пользователь все же решится настраивать память через программу – надо зайти предварительно в BIOS. Чтобы выставить тайминги памяти (только, вручную):

По умолчанию, они всегда «Auto», так что, этот шаг (на подготовительном этапе) – обязателен.

Пояснение: тайминги памяти компьютер берет из SPD самой памяти (при каждой новой загрузке ПК, если значение в BIOS-е – «авто»). В свою очередь, SPD содержит значения, «рекомендованные» производителем. Вместо «авто»-режима, нужно каждое значение тайминга установить в «явном» виде (а каким его сделать – ну хотя бы таким же, как было в SPD).

То есть – берем, заходим, меняем (вместо «Auto», становится «5», затем «5», ну и так далее, согласно отображаемым данным из SPD). SPD переводится как: «последовательный детектор предсказания», в общем, название смысла не отражает (по-русски, это было б скорей «ПЗУ памяти»).

Значений – достаточно много, но поменять их – реально (в приведенном здесь BIOS – всего лишь 9, затем – еще 5). Все должно получиться…

Статистика разгона

Возьмем и рассмотрим сейчас выбранные наугад результаты из «Оверклокеров.ру» (из статистики по разгону наиболее «легкого» в этом смысле семейства – Propus, он же Атлон-II Х4).

Результат первый: 3667 МГц (282 «базовая» * 13,0). Кулер – BOX. Подъем напряжения – все же, использовался (реальное значение Vcore составляло около 1,5 Вольт). Вывод: как видим, базовая частота – неплохо поддается разгону. Кулер – менять не потребовалось. Применялась очень «неслабая» системная плата (ASUS M4A78LT-M), с «неслабой» системой питания. Штатная частота CPU: 200*13,0.

Результат второй: 3510 Мгц (234 * 15.0). Напряжение Vcore = 1.416 (то есть, не сильно завышенное). И это – стабильный разгон (похоже, что «базовую» сильнее повысить – не получилось), но плата также была «не простая» – ASrock 870 Extreme3 (кулер – BOX). Штатный режим: 200*15,5.

Третий результат: 3510 Мгц (260 * 13.5). Иногда «базовая» все-таки поддается разгону (на плате ASUS M4A77T). Напряжение – почти «штатное» (1,5 Вольт), а вот кулер понадобился совершенно «не BOX» (Cooler Master Hyper 212 Plus). Штатный режим: 200*15,0. Температура всех Cores «по-максимальному», и – в режиме полной загрузки процессора, не превышала 50!

В первом примере – температура равна 62 Гр. С, во втором – 50.

Advanced Clock Calibration (ACC)

Как разогнать процессор AMD – мы рассмотрели довольно подробно. Но, есть еще одна функция, знать о которой – необходимо. Функция «сверхточного» подбора частот, который выполняется автоматически (называемая ACC).

ACC присутствует только на платах с южным мостом «от 750» или выше. Саму ACC, можно включать как в программе, так и внутри BIOS (в обоих случаях, перезагрузка – нужна).

Зачем мы здесь говорим об этом? Для 45-нм процессора Phenom II, лучше всего – отключать ACC (ведь AMD заявляет, подобная функция – есть в кристалле процессора). Что верно и для любых CPU с тех. процессом «не старше». А для более «старых» процессоров (Phenom и Athlon 65-нм), ACC надо выставить в положение Auto. От +2% до +4% прироста частот – гарантировано.

Так что, зайдите на нашу «любимую» вкладку (Performance Control), проверьте значение.

Что может влиять на «успешность» разгона?

В самом начале, уже говорилось о том, что при разгоне, процессор – требует больше энергии. У AMD, большинство настольных процессоров «укладывалось» в 95-ваттный пакет. Но это не значит, что мощность (и потребляемая, и выделяемая) – обязана быть на этом пределе.

Кстати, в последнее время, ситуация – не улучшается. Процессоры AMD FX, несмотря на использование техпроцесса 32-нм, остались примерно на этом же уровне (значение TDP – не уменьшилось ниже 95-ти).

Для разгона, важны «три» устройства: система питания CPU (на мат. плате), БП (как уже говорили выше), и кулер процессора.

Этот «набор» – должен быть «сбалансированным», то есть, все комплектующие должны полностью соответствовать требованиям остальных. Пользователь, наверно, догадывается, что нет смысла ставить «крутую» системную плату, если БП – «не тянет» и половину всей мощности. В общем же, 20 Ампер – это «минимум» блока питания, для его линии 12 Вольт (240 Ватт, но бывают и большие требования). Прожорливость же, то есть мощность процессора, с ростом частот – идет нелинейно. В начале обзора, мы показали (сколько «кушает» 965-й). Нагрузка растет и при повышении напряжений питания Vcore.

Всю эту мощность, надо еще «отводить» (выделяется все это – в виде тепла на самом CPU). Для Athlon II – чаще достаточно кулера «BOX», но о более «мощных» процессорах – так не сказать… Тут речь идет о разгоне, конечно.

Все эти требования – очень важны. Однако, разгон – лотерея, финальный его результат будет зависеть от экземпляра процессора. Вся же «обвязка» – только поможет раскрыть потенциал. Не стоит слишком уж верить данным статистики (а также, обзорам), где 45-нм «камни» – превосходят предел в 4,0 Гигагерца. Экземпляры есть разные (гонится Core – но не гонится «кэш»), варианты – различны, а что разгонять (и – нужно ли это) – решает сам пользователь.

О результатах разгона

Мы не будем писать о производительности, о ее росте вместе с «разгоном». Реальная скорость работы – действительно, изменяется, и изменяется в лучшую сторону (но – нелинейно с самой частотой).

Рассмотрим здесь пару случаев. То есть, последствий (при этом – не слишком желательных).

Пользователь «не разгонял» новый процессор. По истечении срока гарантии, это было «исправлено», и почти сразу. Все было правильно выполнено (найдена максимальная частота, и т.п.).

Сам же ПК, в этом режиме работал 2 месяца. Ну а затем – перестал (как бы, сломался). Чем не повод для паники?

Проблема была же – только в разъеме на плате (сильно окислился, в результате чего, 12V на процессор – не поступало). Что остальное – в порядке, выяснилось после замены разъема. Однако, в «штатном» режиме, компьютер и дальше работал бы, ничего не пришлось бы менять (просто разъем, как назло, был 4-пиновый).

Нередким дефектом можно считать и отпайку транзистора платы в цепи питания CPU (силовые транзисторы на «материнке»). Если до разгона – все как бы, работает, затем, сам пользователь – добросовестно «включает» все тесты, вызывающие максимальную «мощность» (а компьютер – берет, и «гаснет», в процессе этих вот тестов)… Простым «монтажем», после такого дефекта – системная плата не восстановится. Следить же за значением температуры – получается, что невозможно (ну, нет таких датчиков на «материнке»). Мощным тестом для «перегрева» считается S&M, в то время как Prime95 –быстрее других находит ошибки.

То есть, в «разгоне» – возможны ошибки. Исходящие от «разгоняющего». Вероятность которых – тем ниже, чем более качественное остальное «железо» (как было рассмотрено: системная плата, БП, и так далее). А качество, так же, и стоит дороже. Может, за эту же сумму – взять более быстрый процессор…

Будет ли смысл разгонять – решает сам пользователь. Что разгонять, и чем проверять – выбор вы делаете самостоятельно.

Приведенной здесь информации – должно быть достаточно для «основного» разгона. Более тонкая настройка «железа» – требует квалификации.

О них даже говорить не хочется. Двести долларов за AMD Athlon 64 3000+? Полгода назад над такими предсказаниями можно было только посмеяться, но лучше вызвать для пророка скорую психиатрическую помощь. Увидев такой ценник, надо было смело бить витрины – любой суд бы оправдал. Сейчас рассмеяться не получится – скулы сводит, такие цены стали реальностью.

В недавней новости о дефиците процессоров AMD есть, на первый взгляд, обнадёживающая, но страшная, по сути, фраза: "...в данном случае подвели партнёры, переговоры с ними уже ведутся, и в следующем квартале AMD рассчитывает решить проблему". Когда-когда? Не завтра? Не после Нового Года? Не через месяц? В следующем квартале? То есть по нормальным ценам процессоры AMD можно будет купить только месяца через четыре, а то и через полгода?

Даже не знаю, что вам сказать... Не покупайте компьютеры вообще? Не получится... Покупайте процессоры Intel Pentium 4 с номинальной частотой шины 533 МГц, поскольку они не дорожают? Но у них производительность ниже, даже при хорошем разгоне... Есть надежда, что новые процессоры Intel на ядрах Presler и CedarMill, основанные на 0.065 мкм техпроцессе, смогут порадовать хорошим разгоном при умеренном энергопотреблении и температуре. Если это действительно так и с самого начала 2006-го года Intel сможет обеспечить этими процессорами всех желающих, то доля AMD в наших компьютерах существенно сократится. Всё наработанное за последние годы можно потерять в одночасье. Какими бы хорошими ни были процессоры AMD, но если цена на них высока или, что намного хуже, их просто нет в продаже, то вполне естественно обратить внимание на процессоры конкурента. А если они ещё и разгоняться будут лучше Prescott степпинга E0...

Цена на новые процессоры Intel должна быть не выше, чем у старых – традиционно компания по инерции (а может, исходя из трезвого и дальновидного расчёта) берёт дополнительные деньги только за увеличение тактовой частоты, а новые технологии отдаёт даром. Это нам на руку – с помощью разгона мы практически бесплатно увеличим частоту и так же бесплатно (вернее, по той же цене) получим новый техпроцесс. Я полагал, что только новое поколение процессоров Intel, отказавшееся от NetBurst-архитектуры, сможет вернуть компании былую славу. Однако возможно, что в свете текущей ситуации это произойдёт гораздо раньше. Очень может быть, что Presler и CedarMill станут первыми процессорами Intel, за которые будет не очень стыдно их владельцам, с момента появления печально известного ядра Prescott.

Если всё так и произойдёт, то я тоже встану в очередь за новыми процессорами Intel, пока же предлагаю вернуться к реальности и оценить возможности тройки AMD Athlon 64 X2 3800+. Все они относятся к одной партии и выпущены на 41-ой неделе этого года, о чём говорит вторая строка маркировки: CCB2E 0541XPMW . Зная первую строку – ADA3800AA5CD – мы можем выяснить характеристики процессоров на сайте AMD:

Итак, это процессоры, сделанные на уменьшенном вдвое по объёму кэш-памяти ядре Toledo, о неплохом оверклокерском потенциале которых нам говорили ещё летом.

Утилита CPU-Z утверждает, что процессоры основаны на ядре Manchester, формально это так, но правильнее было бы сказать Toledo/512. Именно таким образом определяют процессоры утилиты OverSoft CPU Informer 0.95 и RM CPU Clock Utility 1.8, однако они не смогли правильно показать частоту при включении технологии Cool"n"Quiet.

В конфигурации нашего открытого тестового стенда не появилось никаких новых элементов:

  • Материнская плата – Abit Fatal1ty AN8 SLI, rev. 1.0, BIOS 19;
  • Память – 2x512 MB Corsair CMX512-4400C25;
  • Жёсткий диск – Western Digital Raptor WD740GD;
  • Кулер – Zalman CNPS9500 LED;
  • Термопаста – Zalman;
  • Блок питания – SilverStone Zeus ST65ZF (650W);
  • Операционная система – WinXP SP2.

Не изменилась и методика проверки: уменьшаем частоту работы памяти и шины HyperTransport, отбираем лучший экземпляр из тройки с помощью экспресс-теста SuperPi, после чего проводим с ним более детальные тесты.

Моё сердце покорил уже первый процессор. Он с лёгкостью заработал при номинальном напряжении 1.35 В и множителе х10 на частоте тактового генератора 260 МГц, но уже при 265 МГц не проходил тесты. Второй процессор, его серийный номер отличался от первого всего на несколько единиц, оказался чуть хуже – на частоте 260 МГц проходил тест SuperPi, а при 265 был уже не в состоянии загрузить Windows. Третий процессор относился к той же партии, но его серийный номер отличался уже на несколько сотен, именно он и оказался лучшим, выполнив тест в SuperPi на частоте 275 МГц. На этой частоте он не смог пройти проверку в S&M 1.7.6 beta, но выдержал её при частоте 270 МГц.

Я был просто в восторге – два ядра на частоте 2.7 ГГц при номинальном напряжении 1.35 В – фантастика! Температура во время проверки утилитой S&M при 100%-ной нагрузке в режиме "норма" поднялась всего до 53°C при комнатных 21°.

Кстати, я попытался использовать для тестов новомодную утилиту OCCT. Не знаю, что она проверяет и как работает, но, в отличие от S&M, грузит только одно ядро, а в двух экземплярах она не запустилась. Во время теста температура повысилась лишь до 41°C.

Не стал бы слепо доверять показаниям температуры процессора на плате Abit Fatal1ty AN8 SLI. Некоторое время назад они были скорректированы в BIOS и кажутся мне несколько заниженными, хотя бы потому, что в покое температура опускалась до 28°C – маловато что-то... Впрочем, это не так важно. Главное, что температура в пределах нормы, а процессор стабильно работает на частоте 2.7 ГГц. Я уже предвкушал такой же лёгкий разгон до 2.9 ГГц, а то и выше, но оказалось, что на повышение напряжения процессор отзывается очень слабо. 2.8 ГГц – это максимальная частота стабильной работы, причём напряжение потребовалось поднять всего на 0.1 В, до 1.45 В.

При разогреве утилитой S&M температура повысилась до 62.6°C.

Итак, тесты завершены, но мне безумно не хотелось расставаться с таким чудесным процессором, хотя днём ранее я даже не думал о перспективе апгрейда. Мрачное вступление к этой заметке портит впечатление и не даёт возможности передать почти фанатский восторг от такого лёгкого и воодушевляющего разгона. Разуму пришлось выдержать нелёгкую борьбу с Внутренним Голосом.

Во-первых, процессор вовсе не дешёвый. (А как же подарок себе к Новому Году? Новый Год, подарки – это святое!) Во-вторых, в следующем году грядёт переход на новый сокет M2. Кстати, возможно, что процессоры AMD Athlon 64 X2 3800+ на него так и не перейдут, оставшись на Socket 939. (Сам-то понял, что глупость сморозил? При чём тут сокеты и переходы? У тебя уже сейчас будет новый распрекрасный двойной процессор, с лёгкостью работающий на частоте 2.7 ГГц. Появятся новые процессоры – вот тогда на них и посмотрим. Подарки себе можно и в середине года покупать.) А самое главное – не нужен мне сейчас процессор с двумя ядрами. Нет у меня таких задач, с которыми не справился бы одноядерный.

Внутренний Голос ничего не смог возразить и на этот раз мне удалось удержаться от незапланированного апгрейда. Вы же обратите внимание на AMD Athlon 64 X2 3800+, если двухъядерные процессоры вам действительно необходимы. Аналогичные процессоры Intel Pentium D на ядре SmithField имеют только одно преимущество – более низкую цену. В статье "Обзор AMD Athlon 64 X2 3800+: двухъядерность и 64-битность идут в массы " наглядно показана мощь двойных процессоров от AMD. В тот раз процессор с ядром ревизии E4 смог разогнаться всего лишь до 2.4 ГГц и то выглядел очень достойно. Наш сегодняшний экземпляр с разгоном до 2.7 ГГц разорвал бы всех соперников на маленькие кремниевые крошки.



error: Content is protected !!